• Title/Summary/Keyword: Laminar flow

Search Result 938, Processing Time 0.02 seconds

Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number (높은 Pr 수의 유체를 사용한 수직 원형관 외부의 자연대류 실험)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.

Fluid-mud deposits in the Early Cretaceous McMurray Formation, Alberta, Canada (캐나다 앨버타주 전기 백악기 맥머레이층의 유성이토 퇴적층)

  • Oh, Juhyeon;Jo, Hyung Rae
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.477-488
    • /
    • 2018
  • Fluid muds commonly occur in estuarine environments, but their ancient examples have rarely been studied in terms of depositional characteristics and processes. Cores of estuarine channel deposits of the Early Cretaceous McMurray Formation, Alberta, Canada show various mudstone layers that possess depositional characteristics of high clay-concentration flows. These mudstone layers are examined in detail through microscopic observation of thin sections and classified into three microfacies (<1 to 25 mm thick) on the basis of sedimentary texture and structures. Structureless mudstone (Microfacies 1) consists mainly of clay particles and contains randomly dispersed coarser grains (coarse silt to fine sand). This microfacies is interpreted as being deposited by cohesive mud flows, i.e., fluid muds, which possessed sufficient strength to support suspended coarser grains (quasi-laminar plug flow). Silt-streaked mudstone (Microfacies 2) mainly comprises mudstone with dispersed coarse grains and includes very thin, discontinuous silt streaks of coarse-silt to very-fine-sand grains. The texture similar to Microfacies 1 indicates that Microfacies 2 was also deposited by cohesive fluid muds. The silt streaks are, however, suggestive of the presence of intermittent weak turbulence under the plug (upper transitional plug flow). Heterolithic laminated mudstone (Microfacies 3) is characterized by alternation of relatively thick silt laminae and much thinner clay laminae. It is either parallel-laminated or low-angle cross-laminated, occasionally showing low-amplitude ripple forms. The heterolithic laminae are interpreted as the results of shear sorting in the basal turbulent zone under a cohesive plug. They may represent low-amplitude bed-waves formed under lower transitional plug flows. These three microfacies reflect a range of flow phases of fluid muds, which change with flow velocities and suspended mud concentrations. The results of this study provide important knowledge to recognize fluid-mud deposits in ancient sequences and to better understand depositional processes of mudstones.

Effect of Volatile Matter and Oxygen Concentration on Tar and Soot Yield Depending on Coal Type in a Laminar Flow Reactor (LFR에서 탄종에 따른 휘발분과 산소농도가 타르와 수트의 발생률에 미치는 영향)

  • Jeong, Tae Yong;Kim, Yong Gyun;Kim, Jin Ho;Lee, Byoung Hwa;Song, Ju Hun;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1034-1042
    • /
    • 2012
  • This study was performed by using an LFR (laminar flow reactor), which can be used to carry out different types of research on coal. In this study, an LFR was used to analyze coal flames, tar and soot yields, and structures of chars for two coals depending on their volatile content. The results show that the volatile content and oxygen concentration have a significant effect on the length and width of the soot cloud and that the length and width of the cloud under combustion conditions are less than those under a pyrolysis atmosphere. At sampling heights until 50 mm, the tar and soot yields of Berau (sub-bituminous) coal, which contains a large amount of volatile matter, are less than those of Glencore A.P. (bituminous) coal because tar is oxidized by the intrinsic oxygen component of coal and by radicals such as OH-. On the other hand, at sampling heights above 50 mm, the tar and soot yields of Berau coal are higher than those of Glencore A.P. coal by reacted residual volatile matter, tar and light gas in char and flame. With above results, it is confirmed that the volatile matter content and the intrinsic oxygen component in a coal are significant parameters for length and width of the soot cloud and yields of the soot. In addition, the B.E.T. results and the images of samples (SEM) obtained from the particle separation system of the sampling probe support the above results pertaining to the yields; the results also confirm the pore development on the char surface caused by devolatilization.

Characteristics of Micro-Particle Separation according to HRT Changes (HRT 변화에 따른 미세입자 분리 특성)

  • Ahn, Kwangho;Ahn, Jaehwan;Kim, I-Tae;Kim, Seoggu;Kang, Sungwon;Park, Eunzoo;Lee, Youngsup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.937-942
    • /
    • 2013
  • Fluid generated within the sonic or ultrasonic waves are reflected by the wall, while the opposite direction forming a predetermined sound wave to the acoustic standing wave is referred to. In this study, the frequency of 1.0 MHz and 2.0 MHz acoustic standing wave generation module is installed in a continuous particle separation device, the laminar flow of influent, taking into account the hydraulic retention time (HRT) in accordance with changes in particle separation characteristics investigated. Operation of a standing wave in the particle separation device about $1.3{\sim}2.8^{\circ}C$ temperature is increased, but did not significantly affect the formation of standing waves. During operation, the HRT 1 hr frequency 1.0 MHz 2 hr, 4 hr longer as the particle separation efficiency (turbidity) were 64.1%, 70.0%, 74.3% and, 2.0 MHz has 58.0%, respectively, depending on HRT, 61.8%, 70.7% in the respectively. That is, the same frequency, the HRT treatment efficiency is 10% or more, depending on differences in generation and, 1.0 MHz frequency, 2 hr, 2.0 MHz 4 hr at about 70% or more of the processing efficiency can be maintained. Frequency of 1.0 MHz and 2.0 MHz operation at the same time, as a result, HRT 1 hr, 2 hr, 4 hr particle separation efficiency of 63.8%, respectively, 70.6%, 77.6%, rather than the generation of standing waves appear continuous HRT is affecting a lot of particles to separate could know.

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Observation of Ignition Characteristics of Coals with Different Moisture Content in Laminar Flow Reactor (층류 반응기를 이용한 수분함량에 따른 석탄 휘발분의 점화 특성에 관한 연구)

  • Kim, Jae-Dong;Jung, Sung-Jae;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • The main objective of this study is to investigate the variation in the ignition characteristics of coals as a function of moisture content in a laminar flow reactor (LFR) equipped with a fuel moisture micro-supplier designed by the Pusan Clean Coal Center. The volatile ignition position and time were observed experimentally when a pulverized coal with moisture was fed into the LFR under burning conditions similar to those at the exit of the pulverizer and real boiler. The reaction-zone temperature along the centerline of the reactor was measured with a $70-{\mu}m$, R-type thermocouple. For different moisture contents, the volatile ignition position was determined based on an average of 15 to 20 images captured by a CCD camera using a proprietary image-processing technique. The reaction zone decreased proportionally as a function of the moisture content. As the moisture content increased, the volatile ignition positions were 2.92, 3.36, 3.96, and 4.65 mm corresponding to ignition times of 1.46, 1.68, 2.00, and 2.33 ms, respectively. These results indicate that the ignition position and time increased exponentially. We also calculated the ignition-delay time derived from the adiabatic thermal explosion. It showed a trend that was similar to that of the experimental data.

Experimental Study on Particle Temperature and CO/CO2 Emission Characteristics of Pulverized Coal Combustion Condition According to Coal Types in Blast Furnace (고로 내 미분탄 연소조건에서 탄종에 따른 입자온도와 CO/CO2 배출 특성에 관한 연구)

  • Cho, Young Jae;Kim, Jin Ho;Kim, Ryang Gyun;Kim, Gyu Bo;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.807-815
    • /
    • 2014
  • This study was performed using a laminar flow reactor that could replicate the combustion environment of pulverized coal in a blast furnace. Since a pulverized coal injection system was developed for iron making, the combustion characteristics of pulverized coal have been important in the iron and steel industry. The flame structure, particle temperature, and exhaust gas were investigated for different types of coal. The results of this study demonstrated that the combustion characteristics of coal are influenced by several properties of individual coals. In particular, the CO emission and volatile matter content of individual coals were found to have a strong influence on their combustion characteristics. Thus, this study found the properties of the coals to be significant and focused on the particle temperature and CO and $CO_2$ emissions.

An Experimental Investigation of the Effect of Particle Size on the Combustion Characteristics of Pulverized Sub-Bituminous Coal with Low Calorific Value by Using an LFR System (LFR 장치를 이용한 입자 크기 변화에 따른 저열량 아역청 미분탄의 연소특성에 관한 실험적 연구)

  • Jeon, Chung-Hwan;Kim, Yong-Gyun;Kim, Jae-Dong;Kim, Gyu-Bo;Song, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • In this study, the effect of particle size on the combustion characteristics of pulverized sub-bituminous coal was experimentally investigated. A laminar-flow-entrained reactor was designed and implemented to realize the desired heating ratio and temperature corresponding to the combustion atmosphere of a pulverized-coal-fueled furnace. The flame length and structure of burning particles according to different sizes were investigated. Coal combustion processes were clearly distinguished by direct visual observation of the flame structure. The onset point of volatile ignition is greatly affected by changes in the particle size, and the burning time of the volatiles is least affected by changes in the particle size. The length and instability of char flame also increase with the increase of the particle size. However, the char consumption rate within the residential time remains nearly constant.

Natural Convection Heat Transfer in Inclined Rectangular Enclosures (경사진 사각형 공간내의 자연대류 열전달)

  • Chang, Byong-Hoon
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • The laminar natural convection of air in 2-D rectangular enclosure in which two opposing isothermal walls were kept at different temperatures is investigated numerically for Rayleigh number up to $10^6$. Computations were performed for the width-to-height ratios of 1, 2, and 4, and for the inclination angle range of $0^{\circ}{\leq}{\theta}{\leq}90^{\circ}$. For each aspect ratio, the influence of the inclination angle on the flow patterns and heat transfer rates were examined for $10^3{\leq}Ra{\leq}10^6$. It is found that the growth of secondary flow in the corners led to the decrease in overall heat transfer for small aspect ratio case, and the transition from a three-cell structure to a unicell flow pattern in large aspect ratio led to a step-like change in heat transfer. A new correlation of mean Nusselt number is presented for the vertical case of ${\theta}=90^{\circ}$.