• Title/Summary/Keyword: Laminar flow

Search Result 938, Processing Time 0.024 seconds

A Numerical Study on the Laminar convective Heat Transfer around a Circular Cylinder in a Uniform Cross Flow of Liquid (액체중의 원형 실린더 주위에서의 강제대류 층류 열전달에 관한 수치해석적 연구)

  • 강신형;홍기혁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.26-36
    • /
    • 1996
  • Many researches were carried out to estimate heat transfer rate on a circular cylinder in a uniform flow. Various empirical correlations were suggested in the past through experimental studies, however there are considerable discrepancies in the estimated values of heat transfer coefficient. The effect of fluid physical properties on the forced convective heat transfer between a circular cylinder and the external flow was numerically investigated in the present study, The flow and temperature fields were solved using a Finite Volume Method over a wider range of Prandtl number(0.7-40,000) than existing correlations. The cold as well as the hot cylinders in the uniform liquid flow of constant temperature were investigated. A unified correlation was obtainde for both cases.

  • PDF

Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows (저아음속 유동에 놓여진 개방형 공동의 공력소음 특성)

  • Koh, Sung-Ryong;Moon, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

Influence of Flow Conditions on a Boundary Layer to the Near-Wake of a Flat Plat (평판 경계층 유동조건이 근접후류에 미치는 영향)

  • Kim, D.H.;Chang, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1625-1630
    • /
    • 2004
  • An experimental study was carried out to investigate influence of flow conditions on a boundary layer to the near-wake of a flat plate. The flow condition in the vicinity of trailing edge that is influenced by upstream condition history is an essential factor that determines the physical characteristics of a near-wake. Various tripping wires were used to change boundary layer flow condition of upstream at the freestream velocity of 6.0 m/sec. Measurements of the boundary layer and near-wake according to the change of upstream conditions were conducted by using both I-probe(55P14 for boundary layer) and X-probe(55P61 for wake). Normalized velocity profiles of the boundary layer were shown the flow types such as laminar boundary layer, transition, and turbulent boundary layer at 0.95C from the leading edge. The velocity and turbulence intensity profiles of the near-wake for the case of laminar boundary layer at the flat plate surface exhibited a defect and a double peak showing perfect symmetry, respectively.

  • PDF

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.

A Study on the Flow of Drilling Fluids in Slim hole Annuli (굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구)

  • Seo Byung-Taek;Woo Nam-Sub;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.

A Numerical Study of the Effects of Mass Flow Rate Distribution on the Flow Characteristics in a Two Dimensional Multi-Jet with Crossflow of the Spent Fluid (직교류를 가지는 이차원 다중젯트에서 유량분포가 유동특성에 미치는 영향)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1940-1949
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Results show that a fully developed laminar flow exists above a certain Reynolds number whose exact value depends upon the mass flow rate distribution. AS the Reynolds number increases, the flow becomes transitional from downstream and finally a fully developed turbulent flow forms in the jet-flow region. The critical Reynolds number where the fully developed turbulent flow forms is quite dependent upon the distribution of mass-flow rate. One interesting result is that the distribution of the skin friction coefficient along the inpingement plate in the jet-flow region shows a consistent dependency on the Reynolds number, i.e. inversely proportional to the square root of the Reynolds number, regardless of flow regime.

Effects of the Curvature on the Freezing Phenomena of a Laminar Water Flow in a Curved Channel (곡유로내 물의 층류유동에서 곡부가 결빙에 미치는 영향)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1497-1505
    • /
    • 2000
  • A numerical study is made on the ice-formation for a laminar flow in a curved channel. When the water flows through the curved channel with the walls specified below the freezing temperature, the ice layer has been formed on the curved surface, different from that of a straight channel. The fluctuation of ice layer has been predicted, considering the variation of velocity and temperature near the curved portion of channel. The study also takes into account the interaction existing between the laminar flow and the curved channel. In the solution strategy, the present study is substantially different from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. The results from this study have been mainly presented, focusing on the variation of ice layer close to the curved portion. Numerical results have been obtained parametrically by varying the curved angle and the radius of curvature of channel, in addition to the variation of Reynolds numbers and wall temperatures of channel. The results show that the curved shape of channel has the great effect on the thickness of the solidification layer. The wave of ice layer thickness appears in the vicinity of curved portion. This behavior of ice layer has been amplified as is the increasing of curved angle and the radius of curvature of channel. In addition, the ice layer becomes thin as Reynolds numbers in increasing. And also, as the wall temperature of channel increases, the width of channel becomes to be shrunk due to the growth of ice layers in the upper and lower wall of channel.

A study on the pressure loss coefficient of non-Newtonian fluids in the stenotic tubes (비뉴턴 유체의 협착관내 압력손실계수에 관한 연구)

  • Seo, Sang-Ho;Yu, Sang-Sin;Jang, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1603-1612
    • /
    • 1996
  • The pressure loss coefficient of Newtonian and non-Newtonian fluids such as water, aqueous solutions of Carbopol-934 and Separan AP-273 and blood in the stenotic tubes are determined experimentally and numerically. The numerical analyses for flows of non-Newtonian fluids in the stenotic tubes are conducted by the finite element method. The effect of the contraction ratio and the ratio of length to diameter on the pressure drop are investigated by the experiments and numerical analysis. The pressure loss coefficients are significantly dependent upon the Reynolds number in the laminar flow regime. As Reynolds number increases, the pressure loss coefficients of both Newtonian and non-Newtonian fluids decrease in the laminar flow regime. As the ratio of length to diameter increases the maximum pressure loss coefficient increases in the laminar flow regime for both Newtonian and non-Newtonian fluids. Newtonian fuid shows the highest values of pressure loss coefficient and blood the next, followed by Carbopol solution and Separan solution in order. Experimental results are used to verify the numerical analyses for flows of Newtonian and non-Newtonian fluids. Numerical results for the maximum pressure loss coefficient in the stenotic tubes are in fairly good agreement with the experimental results. The relative differences between the numerical and experimental results of the pressure loss coefficients in the laminar flow regime range from 0.5% to 14.8%.

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

A Study of Ice-Formation Phenomena on Freezing of Flowing Water in a Stenotic Tube

  • Suh, Jeong-Se;Kim, Moo-Geun;Ro, Sung-Tack;Yim, Chang-Soon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.1-10
    • /
    • 1999
  • In this study, a numerical analysis is made on the ice-formation for laminar water flow inside a stenotic tube. The study takes into account the interaction between the laminar flow and the stenotic port in the circular tube. The purpose of the present numerical investigation is to assess the effect of a stenotic shape on the instantaneous shape of the flow passage during freezing upstream/downstream of the stenotic channel. In the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. In a channel flow between parallel plates, the agreement between the of predictions and the available experimental data is very good. Numerical analyses are performed for parametric variations of the position and heights of stenotic shape and flow rate. The results show that the stenotic shape has the great effect on the thickness of the solidification layer inside the tube. As the height of a stenosis grows and the length of a stenosis decreases, the ice layer thickness near the stenotic port is thinner, due to backward flow caused by the sudden expansion of a water tunnel. It is found that the flow passage has a slight uniform taper up to the stenotic channel, at which a sudden expansion is observed. It is also shown that the ice layer becomes more fat in accordance with its Reynolds number.

  • PDF