• 제목/요약/키워드: Laminar Heat Transfer

검색결과 282건 처리시간 0.022초

원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달 (Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region)

  • 이대영;박상진;노승탁
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.

균일한 열유속에서의 수직동관내의 강제대류 열전달에 관한 연구 (A study on the forced convection heat transfer in the vertical copper tube at uniform wall heat flux)

  • 백고길;차지영;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제8권4호
    • /
    • pp.213-220
    • /
    • 1979
  • A number of methods has been developed for calculation of heat transfer in the vertical round tube under conditions of forced convection with uniform heat flux at wall. I would like to express hereby one of applications of this study in the design of heat exchanger instruments for water flow at $15.8^{\circ}C(p_r=8)$ used frequently in our daily life. Also all the results are investigated for forced convective heat transfer in the case of heated water-flow at uniform wall heat flux in the vortical round copper tube, where the ratio of length to diameter will be 44. They are well in agreement with Gratz and Kraussold equation respectively in laminar and transition flow range. In turbulent flow in the range from Re=10,000 to 65,000, the experimental formula Is show as follows ; Nu=0.023 $R_e^{0.814}\;P_r^{0.4}$. And this is agreed with Dittus - Boelter equation when Reynolds number exponent increases from 0.80 to 0.814.

  • PDF

환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (I) - 블레이드 끝단 인접 표면 - (Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (I) - Near-tip Blade Surface -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.485-494
    • /
    • 2005
  • For the extensive investigation of local heat/mass transfer on the near-tip surface of turbine blade, experiments were conducted in a low speed stationary annular cascade. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$ of the blade chord. Detailed mass transfer coefficient on the blade near-tip surface was obtained using a naphthalene sublimation technique. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ Extremely complex heat transfer characteristics are observed on the blade surface due, to complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. Especially, the suction side surface of the blade has higher heat/mass transfer coefficients and more complex distribution than the pressure side surface, which is related to the leakage flow. For all the tested Reynolds numbers, the heat/mass transfer characteristics on the turbine blade are the similar. The overall averaged $Sh_{c}$ values are proportional to $Re_{c}^{0.5}$ on the stagnation region and the laminar flow region such as the pressure side surface. However, since the flow is fully turbulent in the near-tip region, the heat/mass transfer coefficients are proportional to $Re_{c}^{0.8}.$

Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

  • Mohseni, Mehdi Moayed;Rashidi, Fariborz;Movagar, Mohammad Reza Khorsand
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.91-102
    • /
    • 2015
  • Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.

미립피복 로릭산 슬러리의 층류 관내 대류 열전달에 관한 연구 (A Study on Convective Heat Transfer of Microcapsulated Lauric Acid Slurry in Laminar Flows Through a Circular Pipe)

  • 최은수;정동주
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1006-1012
    • /
    • 2004
  • The objective of the present study is to reveal thermal characteristic of micro-capsulated lauric acid slurry, which has high latent heat during phase change from solid to liquid, in circular pipe. Tests were performed with the microcapsulated lauric acid slurry in the heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the sizes of microcapsulated lauric acids were increased, local Nusselt numbers of microcapsulated lauric acid slurries were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 1.43 times larger than that of water.

Thermal-flow analysis of a simple LTD (Low-Temperature-Differential) heat engine

  • Kim, Yeongmin;Kim, Won Sik;Jung, Haejun;Chen, Kuan;Chun, Wongee
    • 에너지공학
    • /
    • 제26권1호
    • /
    • pp.9-22
    • /
    • 2017
  • A combined thermal and flow analysis was carried out to study the behavior and performance of a small, commercial LTD (Low-Temperature-Differential) heat engine. Laminar-flow solutions for annulus and channel flows were employed to estimate the viscous drags on the piston and the displacer and the pressure difference across the displacer. Temperature correction factors were introduced to account for the departure from the ideal heat transfer processes. The analysis results indicate that the work required to overcome the viscous drags on engine moving parts and to move the displacer is much smaller than the moving-boundary work produced by the power piston for temperature differentials in the neighborhood of $20^{\circ}C$ and engine speeds below 10 RPS. A comparison with experimental data reveals large degradations from the ideal heat transfer processes. Thus, heat-transfer devices inside the displacer cylinder are recommended.

수직 및 수평 단열판에 부착된 등온 사각비임에서의 자연대류 열전달 (Laminar Natural Convection Heat Transfer from an Isothermal Rectangular Beam Attached to Horizontal and Vertical Adiabatic Plates)

  • 박재림;권순석
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.95-103
    • /
    • 1992
  • 본 연구에서는 주위유체가 공기인 정상 층류 상태하에서 수직 및 수평단열판 에 부착된 등온 사각비임에서의 자연대류열전달 현상을 비임의 현상비와 Grashof수를 변수로 하여 고찰 하였다.

원관내 Bingham Plastic의 층류 대류 열전달(2) 수치해석적 연구-속도분포 발달유동과 속도 및 온도분포 동시 발달유동 (Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe(II) Numerical approach-hydrodynamically develrping flow and simultaneously developing flow)

  • 민태기;최형권;최해천;유정열
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4003-4012
    • /
    • 1996
  • Hydro dynamically developing and simultaneously (hydro dynamically and thermally) developing laminar flows of a Bingham plastic in a circular pipe have been investigated numerically. Solutions have been obtained by using a four-step fractional method combined with an equal order bilinear finite element method. For the hydro dynamically developing flow, shorter entrance length is required to reach fully developed velocity field for larger yield stress and non-monotonic pressure drop along the pipe centerline is observed when the yield stress exceeds a certain critical value. For the simultaneously developing flow, the heat transfer characteristics show the same trends as those predicted for the thermally developing flow (Graetz problem).

감온액정을 이용한 층류유동의 온도장에 관한 실험적 연구 (An Experimental Study on Laminar Flow Temperature Using Thermo-sensitive Liquid Crystal)

  • 장태현
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.373-378
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of laminar water flow in a horizontal circular tube by using liquid crystal. A simultaneous measurement technique has been employed to measure the temperature field in a two-dimensional cross section of fluid flow. This study found the temperature distribution for Re =900~1,500 along longitudinal sections and the results appear to be physically reasonable. To determine some characteristics of the laminar flow, 2D PIV technique is employed for temperature measurement and liquid crystal is used for heat transfer experiments in water. The experimental rig was manufactured from an acryle tube. The test tube diameter of 25mm, and a length of 1200mm. The used algorithm is the gray level cross-correlation method by using Kimura et al. in 1986.

  • PDF

원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달 (Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet)

  • 홍기혁;강신형
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.