• Title/Summary/Keyword: Laminar Flamelet

검색결과 41건 처리시간 0.022초

가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석 (Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor)

  • 정대로;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

메탄올 액적 화염의 음향파 가진에 의한 재점화 (Reignition of Methanol Droplet Flames Under Acoustic Pressure Oscillation)

  • 김홍집;손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.114-122
    • /
    • 1999
  • Reignition as special cases of acoustic pressure responses of flame are numerically studied by employing methanol droplet flame as a laminar flamelet. Quasi-steady flame responses occur in the range of small amplitude, low frequency oscillation. Reignition phenomena can occur when, by increasing the frequency of large amplitude acoustic pressure, the magnitude of characteristic acoustic time is the same order of that of characteristic reaction time of flames. And more increasing of amplitude of acoustic pressure induces the direct extinction of flame. Flame can sustain its own intensity even under the steady extinction temperature in case of high frequency acoustic oscillation, and this tendency is remarkable with increasing frequency. Reignition regime with respect to amplitude and frequency of acoustic pressure doesn't exist in low frequency($10^2$ Hz, in this study), but broadens with frequency of acoustic pressure.

대향류 화염의 비정상 거동에 대한 연구 (Unsteady behavior of counterflow flame)

  • 이기호;이은도;오광철;이춘범;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.33-39
    • /
    • 2002
  • Unsteady behaviors of counterflow flame were studied experimentally in opposing jet counterflow burner using diluted methane. To generate the unsteadiness on the flame, the counterflow diffusion flame was perturbed by velocity changes made by the pistons installed on both sides of the air and fuel stream. The velocity changes were measured by Hot wire and Laser Doppler Velocimetry, and the flame behaviors were observed by High speed ICCD and ICCD. In this investigation, the spatial irregularity of the strain rate caused the flame to extinguish from the outside to the axis during the extinction, and we found the following unsteady phenomena. First, the extinction strain rates of unsteady cases are much larger than those of the steady ones. Second, the extinction strain rates become larger as the slope of the change of the strain rate increases. Third, the unsteady extinction strain rates become smaller with the increase of the initial strain rate.

  • PDF

정전탐침법에 의한 예혼합 난류전파화염의 구조에 관한 연구 (A Study on the Structure of Premixed Turbulent Propagating Flames Using a Microprobe Method)

  • 김준효;안수길
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.78-86
    • /
    • 1995
  • The structure of premixed turbulent flames in a constant-volume vessel was investigated using a microprobe method. The flame potential signal having one to eight peaks was detected in the case of turbulent flames, each of them being regarded as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. The experimental resuits of this work suggest the existence of "reactant islands" behind the flame front when the turbulence was intensified to some extent. The critical(lowest) ratio of turbulence intensity to the laminar burning velocity being found to be about 0.7 for the formation of reactant islands in this experiment.

  • PDF

난류확산연소에서의 Conditional Moment Closure Modeling (Conditional Moment Closure Modeling in Turbulent Nonpremixed Combustion)

  • 허강열
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.9-17
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OR in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame in Turbulent Channel Flow

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1240-1247
    • /
    • 2006
  • Large eddy simulation of turbulent premixed flame in turbulent channel flow is studied by using G-equation. A flamelet model for the premixed flame is combined with a dynamic subgrid combustion model for the filtered propagation flame speed. The objective of this work is to investigate the validity of the dynamic subgrid G-equation model to a complex turbulent premixed flame. The effect of model parameters of the dynamic sub grid G-equation on the turbulent flame speed is investigated. In order to consider quenching of laminar flames on the wall, wall-quenching damping function is employed in this calculation. In the present study, a constant density turbulent channel flow is used. The calculation results are evaluated by comparing with the DNS results of Bruneaux et al.

수소-산소 동축 분사기에 대한 리세스 효과 수치해석 (Numerical Analysis of Recess Effects on Gaseous Hydrogen/Liquid Oxygen Coaxial Injector)

  • 이기범;박태선
    • 한국추진공학회지
    • /
    • 제20권3호
    • /
    • pp.17-24
    • /
    • 2016
  • 본 연구에서 리세스가 있는 기체수소/액체산소 2차원 동축 전단 분사기에 대해 연소해석을 수행하였다. 이상기체와 실제기체 상태방정식을 이용한 정상상태 난류연소에 대해 표준 ${\kappa}-e$ 모델과 층류 화염편 모델이 선택되었다. 리세스 길이가 증가할수록 연소실 내 재순환의 크기가 커지고 와도가 강해졌다. 또한, 온도, 연소생성물, 압력의 변화가 리세스 길이에 큰 영향을 받았다. 해석된 결과들은 리세스가 있는 분사기에 의해서 효과적인 연소기를 얻을 수 있음을 보여주었다.

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.65-70
    • /
    • 2001
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame-front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, unstrained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.62-68
    • /
    • 2002
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame- front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, un strained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.