• 제목/요약/키워드: Laminar

검색결과 1,412건 처리시간 0.025초

Computerized Tomographic Measurements of Morphometric Parameters of the C2 for the Feasibility of Laminar Screw Fixation in Korean Population

  • Kim, Young-June;Rhee, Woo-Tack;Lee, Sang-Bok;You, Seung-Hoon;Lee, Sang-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권1호
    • /
    • pp.15-18
    • /
    • 2008
  • Objective : C2 laminar screw fixation is considered as an excellent alternative to Magerl's transfacetal approach or Harms construct for the atlantoaxial stabilization. However, to our knowledge, there is no report on the feasibility of the new approach to Korean population. We investigated morphometric parameters of the dorsal arch of the C2 to provide the quantitative data for the feasibility of laminar screw fixation. Methods : One-hundred-and-two patients' cervical computed tomography had been reconstructed and investigated on the anatomical parameters related with C2 laminar screw placement. Sixty patients were male and forty-two patients were female. Measurements included the laminar thickness and slope, spino-laminar angle, and maximal screw length. Results : Ages ranged from 20 to 81 and the mean age was 48.4. Mean laminar thickness was 5.7 mm (${\pm}1.0$) (5.8 mm in male and 5.4 mm in female). Fifty-one patients (50%) had a laminar thickness smaller than 5.5 mm at least unilaterally, therefore the patients were considered as inappropriate candidates for the laminar screw fixation in the smaller side of the laminae. Mean value of maximal length of screw was 33.3 mm (34.3 mm in male and 31.9 mm in female). Mean spino-laminar angle was $43.2^{\circ}$ and mean slope angle was $32.9^{\circ}$. Conclusion : Half of patients had inappropriate laminar profiles to accommodate a 3.5 mm screw in at least one side of the axis. The three-dimensional computed tomography reconstruction is mandatory for the preoperative assessment for the feasibility of the C2 lamina.

정적 구형 용기 내 연소 압력을 이용한 층류화염속도측정에 대한 연구 (Laminar Flame Speed Measurement using Combustion Pressure Trace in Constant Volume Spherical Chamber)

  • 변정주
    • 한국연소학회지
    • /
    • 제17권2호
    • /
    • pp.1-8
    • /
    • 2012
  • Laminar flame speeds of Methane at elevated temperatures and pressures were investigated using constant volume spherical chamber. Pressure trace during combustion was measured in each test and this was used in calculating laminar flame speed of Methane. To have large amount of data, experimental apparatus was fabricated with fully automatically controlled feature. A calculating code which calculates laminar flame speeds at various temperatures and pressures with one experimental result was used to calculate laminar flame speeds. The experimental and calculating methods were verified using the calculated laminar flame speed result with PREMIX code.

반응혼합층의 층류확산화염 (Laminar Diffusion Flame in the Reacting Mixing Layer)

  • 신동신
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.605-615
    • /
    • 1996
  • Laminar flows in which mixing and chemical reactions take place between parallel streams of reactive species are studied numerically. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. Ignition, premixed flame, and diffusion flame regimes are found to exist in the laminar reacting mixing layer at high activation energy. At high Mach numbers, ignition occurs earlier due to the higher temperatures in the unburnt gas. In diffusion regimes, property variations affect the laminar profiles considerably and need to be included when there are large temperature differences. The maximum temperature of a laminar reacting mixing layer is almost linear with the adiabatic flame temperature at low heat release, but only weakly at high heat release.

고온 동축류에서 층류 화염의 부상특성 (Characteristics of Laminar Lifted Flame in High Temperature Coflow)

  • 김길남;원상희;차민석;정석호
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2002
  • Characteristics of laminar lifted flames of propane highly-diluted with nitrogen have been investigated at various temperatures of coflow air. At various fuel mole fractions, the base of laminar lifted flames has the structure of tribrachial (or triple) flame. The liftoff heights are correlated well with the stoichiometric laminar burning velocity considering initial temperature at a given coflow velocity. It shows that lifted flames are stabilized on the basis of the balance mechanism between local flow velocity and the propagation speed of tribrachial flame, regardless of the temperature of coflow and fuel mole fraction. Lifted flames exist for a jet velocity even smaller than the stoichiometric laminar burning velocity, and liftoff velocity increases more rapidly than stoichiometric laminar burning velocity as coflow temperature increases. These can be attributed to the buoyancy effect due to the density difference.

  • PDF

메소-스케일 연소 현상의 공학적 의미와 이해 (Understanding and Engineering Meaning of Meso-Scale Combustion Phenomena)

  • 김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.287-289
    • /
    • 2015
  • Meso-scale combustion is defined as combustion phenomena within limited characteristic length scales that are comparable with the laminar flame length scales. In the laminar flame theory, four representative length scales have been involved; i.e., a reaction layer thickness, a thermal layer thickness, a quenching distance, and a Markstein length. When the effects of these length scales on the flame characteristics are understood, the laminar flame theories can be clarified. Therefore, a study on the meso-scale combustion phenomena should not be thought as just a specific phenomena occurring in an exceptional combustion condition. Instead, all combustion phenomena within meso-scale spaces need to be explained by our knowledge. During this challenge, our understanding on laminar flame structures can be extended. Considering that most turbulent combustion phenomena in engineering application are still have local laminar flame structures, studies on laminar flame structures need to be re-visited especially in academic aspects.

  • PDF

타원형 에어포일의 항력 예측 (Drag Prediction of Elliptic Airfoil)

  • 김철완;박영민;권기정;이장연
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.23-26
    • /
    • 2004
  • Drag prediction is sought for the aifoil having laminar and turbulent flow characteristics with CFD code being unable to predict transition to turbulent flow. Laminar flow simulation presents some insight to the transition position. Separate simulations with laminar and turbulent flow and their combination estimate the drag of the airfoil containing laminar and turbulent flow characteristics.

  • PDF

Laminar Flow Inhibits ER Stress-Induced Endothelial Apoptosis through PI3K/Akt-Dependent Signaling Pathway

  • Kim, Suji;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.964-970
    • /
    • 2018
  • Atherosclerosis preferentially involves in prone area of low and disturbed blood flow while steady and high levels of laminar blood flow are relatively protected from atherosclerosis. Disturbed flow induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). ER stress is caused under stress that disturbs the processing and folding of proteins resulting in the accumulation of misfolded proteins in the ER and activation of the UPR. Prolonged or severe UPR leads to activate apoptotic signaling. Recent studies have indicated that disturbed flow significantly up-regulated $p-ATF6{\alpha}$, $p-IRE1{\alpha}$, and its target spliced XBP-1. However, the role of laminar flow in ER stress-mediated endothelial apoptosis has not been reported yet. The present study thus investigated the role of laminar flow in ER stress-dependent endothelial cell death. The results demonstrated that laminar flow protects ER stress-induced cleavage forms of PARP-1 and caspase-3. Also, laminar flow inhibits ER stress-induced $p-eIF2{\alpha}$, ATF4, CHOP, spliced XBP-1, ATF6 and JNK pathway; these effects are abrogated by pharmacological inhibition of PI3K with wortmannin. Finally, nitric oxide affects thapsigargin-induced cell death in response to laminar flow but not UPR. Taken together, these findings indicate that laminar flow inhibits UPR and ER stress-induced endothelial cell death via PI3K/Akt pathway.

층류 예혼합화염의 화염면 형상 제어에 관한 연구 (A Study on the Control of Flame Shapes in Laminar Pre-Mixed Flames)

  • 이원남;서동규
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.103-108
    • /
    • 2003
  • The control of flame shapes in a laminar pre-mixed flame has been experimentally investigated for propane/air pre-mixed laminar flames. Flames of different size and shapes are observed with heated wires or by controlling the equivalence ratio and flow rate of a mixture. The characteristics of the partitioning of a flame or the merge of flames are analyzed and explained by considering the balance between laminar flame speed and upstream mixture velocity. A combustor might be sized down while maintaining its heat production rate the same by partitioning a flame established in it. When the equivalence ratio of mixture is decreased, individual flames are merged together and the upstream mixture velocity can be practically decreased on a nozzle having opening ratio less than unity. As a result, the flame shape is to he adjusted until the newly established balanced condition is satisfied, and then. the stable combustion can be achieved again.

  • PDF

준충류 근사를 이용한 수소-공기 비예혼합화염의 질소산화물 생성예측 (Numerical Prediction of NOx in the Nonpremixed Hydrogen-Air Flame using the Quasi-Laminar Reaction Modelling)

  • 김성룡;정인석;윤영빈
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.131-139
    • /
    • 1999
  • A Numerical Analysis of NOx production in Hydrogen-Air flame is performed using the quasi-laminar reaction modelling. As results, in low global strain rate region, $U_F/D_F\;{\leq}\;50,000$, the quasi-laminar reaction modelling reproduces the experimentally observed EINOx half power scaling that the ratio of EINOx and flame residence time, $L_f^3(D_F^2U_F)$, is proportional to the square root of global strain rate. Thus, it suggests that turbulence-chemistry interaction has a minor impact on the trend of NOx production in low global strain rate region. However, the quasi-laminar reaction modelling predicts the higher temperature and NOx than experimentally observed. This overprediction may be due to the lack of radiation and quasi-laminar reaction modelling.

  • PDF

고온 고압에서 혼합연료의 층류화염속도 예측 모델에 대한 연구 (Laminar Flame Speed Model of Fuel Blends at Elevated Temperatures and Pressures)

  • 변정주
    • 한국연소학회지
    • /
    • 제17권2호
    • /
    • pp.9-16
    • /
    • 2012
  • Iso-octane, n-heptane and their blends were tested in a constant volume combustion chamber to measure laminar flame speeds. The experimental apparatus was automatically controlled to enhance the accuracy and data acquisition speed. A large database of laminar flame speeds at elevated temperatures and pressures was established. From this database, laminar flame speeds of iso-octane, n-heptane and their blends were investigated and analysed to derive new correlation to predict laminar flame speeds at any blending ratio. The new flame speed model was successfully applied to these fuels with limited range of errors.