• Title/Summary/Keyword: Lamina properties

Search Result 52, Processing Time 0.022 seconds

Effects of Sea Tangle (Lamina japonica) Powder on Quality Characteristics of Breakfast Sausages

  • Kim, Hyun-Wook;Choi, Ji-Hun;Choi, Yun-Sang;Han, Doo-Jeong;Kim, Hack-Youn;Lee, Mi-Ai;Kim, Si-Young;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • Breakfast sausages containing 1, 2, 3, and 4% sea tangle powder (Lamina japonica) were prepared. No differences were found in moisture, protein, and fat contents among the control and treatments. However, the ash content increased with increasing amounts of sea tangle powder (p<0.05). The pH levels in the treated samples were lower than the control in both the meat batters and the breakfast sausages (p<0.05). The $L^*$ and $a^*$ values of the meat batters and breakfast sausages were decreased by the addition of the sea tangle powder, and the control had the highest $b^*$ value (p<0.05). The added sea tangle powder improved cooking loss and improved emulsion stability. The T4 sample (containing 4% sea tangle powder) was shown to have the lowest cooking loss and water loss (p<0.05). The hardness, gumminess, and chewiness of the treatments increased compared to the control due to the presence of dietary fibers in the sea tangle. In the sensory evaluations, the 1% sea tangle powder treatment received a lower color score, but received significantly higher scores for flavor, tenderness, and juiciness (p<0.05). Collectively, the breakfast sausage containing 1% sea tangle powder was determined to have the highest overall acceptability. Altogether, the best results, in terms of physicochemical and sensory properties, were obtained for the breakfast sausage containing 1% sea tangle powder.

Histology and lectin histochemistry in the vomeronasal organ of Korean native cattle, Bos taurus coreanae

  • Jang, Sungwoong;Kim, Bohye;Kim, Joong-Sun;Moon, Changjong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.270-284
    • /
    • 2021
  • The vomeronasal organ (VNO) is critical for reproduction and social behavior in ruminants, including cattle. The present study examined the structure of the VNO and its epithelial cells in neonatal and adult Korean native cattle (Hanwoo), Bos taurus coreanae, using immunohistochemistry and lectin histochemistry. Histologically, the VNO comprised two types of epithelia: medial vomeronasal sensory (VSE) and lateral vomeronasal non-sensory epithelia (VNSE). Numerous blood vessels and nerve bundles were observed within the vomeronasal cartilage encased lamina propria. Immunohistochemistry revealed high expression level of protein gene product9.5 and moderate expression level of olfactory marker protein in the neuroreceptor cells of the VSE and occasionally in some ciliated cells of the VNSE in both neonates and adults. The properties of the glycoconjugates in the VNO were investigated using 21 lectins, most of which were expressed at varied intensities in the VSE and VNSE, as well as in the lamina propria. Several lectins exhibited variations in their intensities and localization between neonatal and adult VNOs. This study is the first descriptive lectin histochemical examination of the VNO of Korean native cattle with a focus on lectin histochemistry, confirming that the VNO of Korean native cattle is differentiated during postnatal development.

Efficacies of Potential Probiotic Candidates Isolated from Traditional Fermented Korean Foods in Stimulating Immunoglobulin A Secretion

  • Chang-Yong Choi;Chang-Hee Lee;Jun Yang;Seok-Jin Kang;In-Byung Park;Si-Won Park;Na-Young Lee;Hyun-Been Hwang;Hyun Sun Yun;Taehoon Chun
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.346-358
    • /
    • 2023
  • The aim of this study was to evaluate efficacies of selected lactic acid bacteria (LAB) in inducing immunoglobulin A (IgA) secretion. Twenty-five different LAB isolated from traditional fermented Korean foods were characterized for their probiotic properties and screened to identify those that could stimulate lamina propria cells (LPCs) from Peyer's patch to secret IgA in vitro. Among them, four strains (Lactiplantibacillus plantarum CJW55-10, Lactiplantibacillus pentosus CJW18-6, L. pentosus CJW56-11, and Pediococcus acidilactici CJN2696) were found to be strong IgA inducers. The number of IgA positive B cells and soluble IgA level were increased when LPCs were co-cultured with these LAB. Expression levels of toll-like receptor (TLR) such as TLR2 and TLR4 and secretion of interleuckin-6 were augmented in LPCs treated with these LAB. Further, we determined whether oral intake of these LAB enhanced IgA production in vivo. After one-week of daily oral administration, these LAB feed mice increased mucosal IgA and serum IgA. In conclusion, selected strains of LAB could induce systemic IgA secretion by activating lamina propria B cells in Peyer's patch and oral intake of selected strains of LAB can enhance systemic immunity by inducing mucosal IgA secretion.

Influence of Composition of Layer Layout on Bending and Compression Strength Performance of Larix Cross-Laminated Timber (CLT)

  • Da-Bin SONG;Keon-Ho KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.239-252
    • /
    • 2023
  • In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer's layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.

Physical-Mechanical Properties of Glued Laminated Timber Made from Tropical Small-Diameter Logs Grown in Indonesia

  • Komariah, Rahma Nur;Hadi, Yusuf Sudo;Massijaya, Muh.Yusram;Suryana, Jajang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.156-167
    • /
    • 2015
  • The aim of this study was to determine the physical and mechanical properties of glued laminated timber (glulam) manufactured from small-diameter logs of three wood species, Acacia mangium (mangium), Maesopsis eminii (manii), and Falcataria moluccana (sengon), with densities of 533, 392, and $271kg/m^3$, respectively. Glulam measuring 5 cm by 7 cm by 160 cm in thickness, width, and length, respectively, was made with three to five lamina, or layers, and isocyanate adhesive. The glulams contained either the same wood species for all layers or a combination of mangium face and back layers with a core layer of manii or sengon. Solid wood samples of the same size for all three species were included as a basis for comparison. Physical-mechanical properties and delamination tests of glulam referred to JAS 234:2003. The results showed that the properties of same species glulam did not differ from those of solid wood, with the exception of the shear strength of glulam being lower than that of solid wood. Wood species affected glulam properties, but three- and five-layer glulams were not different except for the modulus of elasticity. All glulams were resistant to delamination by immersion in both cold and boiling water. The glulams that successfully met the JAS standard were three- and five-layer mangium, five-layer manii, and five-layer mangium-manii glulams.

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.623-631
    • /
    • 2017
  • Present paper deals with the temperature-dependent buckling analysis of sandwich nanocomposite plates resting on elastic medium subjected to magnetic field. The lamina layers are reinforced with carbon nanotubes (CNTs) as uniform and functionally graded (FG). The elastic medium is considered as orthotropic Pasternak foundation with considering the effects of thermal loading on the spring and shear constants of medium. Mixture rule is utilized for obtaining the effective material properties of each layer. Adopting the Reddy shear deformation plate theory, the governing equations are derived based on energy method and Hamilton's principle. The buckling load of the structure is calculated with the Navier's method for the simply supported sandwich nanocomposite plates. Parametric study is conducted on the combined effects of the volume percent and distribution types of the CNTs, temperature change, elastic medium, magnetic field and geometrical parameters of the plates on the buckling load of the sandwich structure. The results show that FGX distribution of the CNTs leads to higher stiffness and consequently higher buckling load. In addition, considering the magnetic field increases the buckling load of the sandwich nanocomposite plate.

Stability of tow-steered curved panels with geometrical defects using higher order FSM

  • Fazilati, Jamshid
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.25-37
    • /
    • 2018
  • For the first time, the parametric instability characteristics of tow-steered variable stiffness composite laminated (VSCL) cylindrical panels is investigated using B-spline finite strip method (FSM). The panel is considered containing geometrical defects including cutout and delamination. The material properties are assumed to vary along the panel axial length of any lamina according to a linear fiber-orientation variation. A uniformly distributed inplane longitudinal loading varies harmoni-cally with time is considered. The instability load frequency regions corresponding to the assumed in-plane parametric load-ing is derived using the Bolotin's first order approximation through an energy approach. In order to demonstrate the capabili-ties of the developed formulation in predicting stability behavior of the thin-walled VSCL structures, some representative results are obtained and compared with those in the literature wherever available. It is shown that the B-spline FSM is a proper tool for extracting the stability boundaries of perforated delaminated VSCL panels.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).