• 제목/요약/키워드: Lamellar Tear

검색결과 3건 처리시간 0.015초

라멜라균열의 생성온도와 비금속개재물의 영향 (Determination of Lamellar Tearing Initiation Temperatures and the Effect of Non-metallic Inclusions on Tear)

  • 고진현
    • Journal of Welding and Joining
    • /
    • 제10권2호
    • /
    • pp.43-50
    • /
    • 1992
  • This study was aimed at resolving uncertainties about lamellar tearing initiation temperatures and studying the effect of nonmetallic inclusions on the tear initiation. In order to measure the lamellar tearing initiation temperature, the slice bend test was conducted in the temperature range of 20.deg.C to 425.deg.C on A572 Grade 50 and A588 Grade A steels. In addition, the weld restrain test was carried out to measure directly the tear initiation temperature with A572 steel. In slice bend tests, A572 steel showed the most susceptible region to lamellar tearing to be in the range of 100 to 300.deg.C, where the steel showed the minimum ductility. The observed tear initiation by the weld restraint test was to be in the range of 200to 300.deg.C. The tears became narrower and less rounded at the susceptible temperatures. It was confirmed in this study that lamellar teraring initiated during cooling from welding in the range of 200 to 300.deg.C and they were initiated by strain aging embrittlement.

  • PDF

T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향 (Effects of the buried lamellar tears on the mechanical strength in the welded T joints)

  • 고진현
    • Journal of Welding and Joining
    • /
    • 제6권4호
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

SM570TMC 강재의 재료특성에 관한 연구 (A Study on the Materials Characteristics of SM570TMC Plates)

  • 임성우;김요숙;장인화
    • 한국강구조학회 논문집
    • /
    • 제17권3호통권76호
    • /
    • pp.365-373
    • /
    • 2005
  • 건축물이 고층이 될 수록 고강도 강재의 사용요구가 증대된다. 그러나 고강도 강재는 일반 강재와는 전혀 다른 기계적 특성을 갖고 있다. 고강도 강재를 건축구조물에 적용하기 위해서는 비탄성 영역에서의 거동이 일반 강재와 동등한가를 확인해야 한다. 본 연구에서는 최근 국내에서 개발된 SM570TMC 강재를 건축구조용으로 사용하기 위해서 기계적 성질 및 용접부 특성을 평가하였다. 연속항복현상을 보이는 SM570TMC 강재는 판두께가 증대되어도 강도저감이 발생되지 않았으며, 최소 항복강도가 440MPa로 나타났다. 또한 판두께 방향으로 균일한 경도분포를 보였다. -5oC에서의 Charpy 충격값도 충분한 인성을 보였다. 용접성과 관련있는 탄소당량은 기존 건축구조용 강재보다 훨씬 낮았으며, 용접부 특성도 우수하였다.