• Title/Summary/Keyword: Lamb Waves

Search Result 112, Processing Time 0.02 seconds

Study on the Debonding Detection Techniques of Liner/Propellant Interface of Rocket Motor (추진기관의 라이너/추진제 미접착 검출 기법 연구)

  • Kim, Dong-Ryun;Ryoo, Baek-Neung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.40-47
    • /
    • 2008
  • It is known that the adhesive interface testing of the rocket motor using the ultrasonic wave is superior to the other testing methods about the ability to economical detect the defects. But, the signal analysis of the ultrasonic wave takes a lot of time and efforts because the time interval of the transmitted pulse and the received pulse is too short to separate the reflected signals due to the multi-layers of the rocket motor. The ultrasonic testing of rocket motor have only applied to the automatic system about extremely limited areas like the debond in adhesive interface between the motor case and the insulator. In this study the new technique to detect the debond between the liner and the propellant using the property of the resonance and the lamb waves instead of the existing ultrasonic testing was described.

Feasibility of MFC (Macro-Fiber Composite) Transducers for Guided Wave Technique

  • Ren, Gang;Yun, Dongseok;Seo, Hogeon;Song, Minkyoo;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.264-269
    • /
    • 2013
  • Since MFC(macro-fiber composite) transducer has been developed, many researchers have tried to apply this transducer on SHM(structural health monitoring), because it is so flexible and durable that it can be easily embedded to various kinds of structures. The objective of this paper is to figure out the benefits and feasibility of applying MFC transducers to guided wave technique. For this, we have experimentally tested the performance of MFC patches as transmitter and sensors for excitation and reception of guided waves on the thin aluminum alloy plate. In order to enhance the signal accuracy, we applied the FIR filter for noise reduction as well as used STFT(short-time Fourier transform) algorithm to image the guided wave characteristics clearly. From the results, the guided wave generated based on MFC showed good agreement with its theoretical dispersion curves. Moreover, the ultrasonic Lamb wave techniques based on MFC patches in pitch-catch manner was tested for detection of surface notch defects of which depths are 10%, 20%, 30% and 40% of the aluminum plate thickness. Results showed that the notch was detectable well when the notch depth was 10% of the thickness or greater.

Study on the Debonding Detection Techniques of Liner/Propellant Interface of Rocket Motor (추진기관의 라이너/추진제 미접착 검출 기법 연구)

  • Kim, Dong-Ryun;Ryoo, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.55-59
    • /
    • 2007
  • It is known that the adhesive interface testing of the rocket motor which using the ultrasonic wave iS superior to the other testing methods about the economically detectable abiliη of the defects. But, the signal analysis of the ultrasonic wave takes too much time and effort that the time interval of the transmitted pulse and the received pulse is too short to be separated the reflected signals because the structure of the rocket motor is multi-layers. The ultrasonic testing of rocket motor have been only applied with automatic system about extremely limited area like the debond in adhesive interface between the motor case and insulator. In this study the new technique to detect the debond between the liner and the propellant using the property of the resonance and Lamb waves was described as comparing the existence ultrasonic testing.

  • PDF

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.152-159
    • /
    • 2013
  • A structural health monitoring(SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

Measurement of plastic anisotropy of cold rolled steel sheets using electromagnetic acoustic transducer (EMAT를 이용한 냉연강판의 소성이방성 측정)

  • 황의찬;장경영;안봉영;이승석;김수광;김상영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.383-388
    • /
    • 1994
  • Ultrasonic sensor for evaluating plastic anisotropy was developed. Magnetostrictive type EMAT is sensor to transmit and receive the Lamb wave using magnetostriction. It is suitable for on line processing because of transmitting and receiving ultrasonic without contact ODCs(orientation distribution coefficients), W $_{400}$. W $_{420}$. W $_{440}$. were respectively calculated using zeroth order Lamb wave velocities, the calculated ODCs was used for evaluating plastic anisotropy, the results was compared for mean values of destructive tests. Besides, the Lorentz EMAT for generating longitudinal wave and two shear waves simultaneously and the Lorentz type EMAT for measuring SH wave velocities were made. ODCs were calculated using the measured resonant modes and velocities. the results of two methods show possibility of an line processing measurement.

  • PDF

Enhanced impact echo frequency peak by time domain summation of signals with different source receiver spacing

  • Ryden, Nils
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The Impact Echo method can be used to measure the thickness of concrete plate like structures. Measurements are based on the identification of a clear thickness resonance frequency which can be difficult in very thick or highly attenuative plates. In this study the detectability of the measured resonant frequency is enhanced by time domain summation of signals with different source receiver spacing. The proposed method is based on the spatial and temporal properties of the first higher symmetric zero group velocity Lamb mode (S1-ZGV) which are described in detail. No application dependent tuning or filtering is needed which makes the method robust and suitable for implementation in automatic IE thickness measurements. The proposed technique is exemplified with numerical data and field data from a thick concrete wall and a highly attenuative asphalt concrete layer.

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Local/Global Structural Health Monitoring System Using Piezoelectric Sensors (압전센서를 이용한 구조물 국부/광역 손상 진단 시스템)

  • Kim, Byung-Soo;Kwon, Hyeok-Sang;Kim, Jin-Wook;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.308-317
    • /
    • 2009
  • In the present work, a sensor system composed of an oscillator sensor and a Lamb wave sensor is proposed for the purpose of structural health monitoring. The oscillator sensing system detecting the shift of a structural resonant frequency in proportion to the amount of defects in the structure is a pretty sensitive and simple device, but its detectable range is limited to its local zone. The Lamb wave sensor system, however, is applicable to global detection of the defects. This study is aimed at investigating the feasible combination of the two systems to exploits their merits simultaneously. The scheme to use PZT patches as the oscillator sensor as well as the Lamb wave sensor was proposed to identify the position, length and number of cracks by means of TOF and amplitude of signals, and its validity was confirmed through experiments.

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF