• Title/Summary/Keyword: Lam$\acute{e}$ constants

Search Result 2, Processing Time 0.015 seconds

NUMERICAL SOLUTIONS FOR MODELS OF LINEAR ELASTICITY USING FIRST-ORDER SYSTEM LEAST SQUARES

  • Lee, Chang-Ock
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.245-269
    • /
    • 1999
  • Multigrid method and acceleration by conjugate gradient method for first-order system least squares (FOSLS) using bilinear finite elements are developed for various boundary value problems of planar linear elasticity. They are two-stage algorithms that first solve for the displacement flux variable, then for the displacement itself. This paper focuses on solving for the displacement flux variable only. Numerical results show that the convergence is uniform even as the material becomes nearly incompressible. Computations for convergence factors and discretization errors are included. Heuristic arguments to improve the convergences are discussed as well.

  • PDF

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.