• Title/Summary/Keyword: Lake water

Search Result 1,325, Processing Time 0.033 seconds

The Variation of Water Quality due to Sulice Gate Operation in Shiwha Lake (시화호의 배수갑문 운용에 따른 수질변화)

  • 김종구;김준우;조은일
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1205-1215
    • /
    • 2002
  • To evaluate the change for water quality after the water gate operation in Shiwha lake, in situ survey were conducted on september in 2000 and January, march, jane in 2001. Chemical characteristics and eutrophication level was estimated from the survey data. The water quality of the Shihwa lake was greatly affected by pollutant load from rainfall, and formation of stratification in summer and winter was increased to effect on nutrient release from sediment. Especially, high concentration of chlorophyll-a was occurred in autumn, due to increased nutrient, high water temperature and low salinity after rainfall runoff. The mean concentration of DIN, DIP were 0.346mg/L, 0.0217mg/L in surface water and 0.826mg/L, 0.0415mg/L in bottom water, respectively, which were over III grade of seawater standard. Also high percentage of ammonia nitrogen to DIN in bottom water for autumn and winter was affected by released nutrient from sediment. Correlation analysis of chlorophyll-a versus TSS was shown that organic matter was affected by autochthonous organic matter stem from the algae, these factor showed reverse correlation about salinity. Closely correlations among to the water quality constituent in continuity survey was appeared. The results of eutrophication index estimation showed the high potentiality of red tide occurrence in Shiwha lake, particularity in summer or fall. Overall water quality was greatly improve to compared with measuring data during 1997~1998 at the beginning water gate operation, which reported by KORDI. Therefore, to improve of water quality in Shiwha lake, we need to establish of management plan about nutrient release from sediment, rainfall runoff, maximum of seawater exchange.

The Influence of Lake Position on Groundwater Fluxes (호수의 위치가 지하수 Flux에 미치는 영향)

  • 배상근
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.133-142
    • /
    • 1995
  • The purpose of this study is to investigate the influence of the position of lake upon groundwater fluxes on a lake watershed, and to provide the guidance for the monitoring network design to survey the exchange relations between grondwater and lake water. Three kinds of hypothetical flow through lakes, which are located at the upper, middle, and lower portion of a watershed were considered. And groundwater flow for each case was numerically simulated under three-dimensional steady state conditions. As a result, it can be shown that: (1) The exchange between lake and groundwater in the case where a lake is located at lower portion on watershed shows more active than that for a lake located at upper portion. (2) The amounts of inflow from groundwater to a lake are less than the amounts of discharge to groundwater in a target lake watershed. (3) The rate of inflow and outflow of groundwater to a lake is increased as the lake is located at upper portion of a watershed. (4) The horizontal flux of groundwater occurred on the lake bed is more significantly active than the vertical flux.

  • PDF

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Characteristics of Water Quality In the Shihwa Lake and Outer Sea (시화호 및 주변해역의 수질 특성)

  • Jang, Jeong-Ik;Han, Ihn-Sub;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.105-121
    • /
    • 2011
  • The operation of tidal power facility may induce severe changes of water quality in Shihwa Lake. Current water quality data are quite important to water quality management policy of Shihwa Lake. Thus, the water quality data of Shihwa Lake and its adjacent sea in 2010 were presented to characterize the temporal and spatial changes of water parameters such as pH, SS, DO, COD, dissolved nutrients, chlorophyll-a, TN and TP. Highest levels of water quality parameters were observed near the Shihwa and Banweol industrial complexes and the levels of water quality parameters were on a decreasing trend to those near the water gate. It suggests that the horizontal distributions of water quality levels are mainly controlled by the supply of fresh water from streams and the inflow of outer seawater by operation of water gate. Although the higher concentrations of TN and TP were observed in the location being affected by Sorae port, the levels of water quality parameters in outer sea of Shihwa Lake were lower than those in Lake. In summer season, hypoxic condition was well developed in bottom water by strong stratification and active decomposition of organic matter. Thus, the vertical distributions of dissolved nutrient, TN and TP concentrations showed the concentrations to be higher in bottom seawater than those in surface seawater whereas the vertical distributions of chlorophyll-a, COD and POC concentrations showed the concentrations to be higher in surface seawater than those in bottom water. Results of Pearson's correlation matrix for surface seawater demonstrated that salinity showed negatively good correlation with not only dissolved nutrients except for ammonium but chlorophyll-a, COD and POC This result indicates that the supply of dissolved nutrients through several streams might significantly affect phytoplankton bloom and increase of COD concentration in surface seawater.

Phytoplankton Community, Pollution Sources and Water Quality of Drinking Water Lakes in Ulsan (울산지역 상수원 호수 환경에 따른 식물플랑크톤 분포)

  • Lee, Hae-Jin;Tak, Bo-Mi
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1349-1360
    • /
    • 2012
  • This study presented the phytoplankton communities of the three lakes (Sayeon, Daeam, Hoeya ) using for drinking water in the Ulsan reservoir. The water storage of the Lake Sayeon, Daeam and Hoeya were 25, 13, 21 million ton respectively and most of which were being utilized for industrial and residential purposes. The total precipitation of the Ulsan region in 2010 was 1,162 mm, decreasing 10 % from 1,275 mm of the annual. As for pollutant loads, BOD and TN discharge loads of Daeam was the highest with 3,277 kg/day, 1,931 kg/day and 90 % of them were came from non-point pollutant sources. TP discharge loads showed the highest in the lake Hoeya with 643 kg/day and 97 % of them were came from point sources as household, industry and livestock. We assessed water quality of the lake Sayeon, Daeam and Hoeya using 17 variables. The water quality assessment found that the lake Daeam met the fourth to fifth grade because of high concentration of COD, SS and chlorophyll-a. Eutrophication assessment was conducted by revised Carlson's Index (TSIm, Aizaki) and found that Lake Daeam was more eutrophicated than the other two lakes all the year through as for chlorophyll-a, transparency and the total phosphorus (TP). A total of 95~111 phytoplankton species were identified from the three lake samples. Among them, the largest number of species were Chlorophyceae with 35~51, followed by Bacillariophyceae with 36~45, Cyanophyceae with 9~11, and Cryptophyceae with 6~9 species. The total cell number of phytoplankton was the highest in February (15,254 cells/mL) with Bacillariophyceae in the lake Daeam and the seasonal succession shows that Bacillariophyceae (Stephanodiscus spp.) in the spring, Cyanophyceae (Anabaena spp.) in the summer and the autumn, Bacillariophyceae (Stephanodiscus spp.) in the winter.

Long-Term Water Quality Trend Analysis of Lake Soyang Using Seasonal Mann-Kendall Test (계절 Mann-Kendall 검정을 이용한 소양호의 장기 수질 경향성 분석)

  • Yeom, Hojeong;An, Yongbin;Jung, Seyoon;Kim, Yoonseok;Kim, Bomchul;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • The long-term monitoring of the Soyang Lake's water quality, covering 25% of the North Han River watershed, is crucial for effective management of both lake water quality and pollution sources in the broader region. This study utilized continuous monitoring data from the front of the Soyang Dam spanning 2003 to 2022, aiming to analyze trends and provide foundational insights for water quality management. Results revealed a slightly poor grade (IV) for total nitrogen (T-N) in both surface and mid-depth layers, indicating a need for concentrated T-N management. Trend analyses using the Mann-Kendall test and Sen's Slope depicted a decreasing trend in total phosphorus (T-P) for both layers, attributed to non-point source pollution reduction projects initiated after the Soyang Lake's designation as a pollution control area in 2007. The LOWESS analysis showed a T-P increase until 2006, followed by a decrease, influenced by the impact of Typhoon Ewiniar in that year. This 20-year overview establishes a comprehensive understanding of the Soyang Lake's water quality and trends, allowing for a seasonal and periodical analysis of water quality changes. The findings underscore the importance of continued monitoring and management strategies to address evolving water quality issues in the Soyang Lake over time.

Geophysical investigations for deciding alignment of head race tunnel and location of lake tapping at Koyna hydroelectric project, Maharashtra, India

  • Wadhwa R. S.;Chaudhari M. S.;Chandrasekhar V.;Saha A.;Mukhopadhyay R.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.370-378
    • /
    • 2003
  • Continuous seismic refraction, reflection and echo-sounder surveys conducted at Koyna Project site provided geotechnical information which helped in choosing the alignment for Head race tunnel and in designing and choosing the site for Lake Tap. Seismic refraction survey both on land and in shallow water determined depths to bedrock and helped in inferring the bedrock quality. Seismic reflection survey mapped the subsurface stratigraphy with high resolution. Reservoir-bed and bedrock contours drawn from the results of the survey helped in choosing the tunnel alignment and the lake tap position cost effectively. It was inferred from the results of the survey that the geology and the quality of rock do not change unexpectedly around the site for extension of Head race tunnel and the lake tapping. The bedrock levels evaluated by seismic survey agreed remarkably well with those inferred in boreholes having Rock Quality Designation 90 percent or more.

  • PDF

Assessment of Seasonal Variation in Water Quality in Daedong Lake (대동호의 시기별 및 계절별 수질변화 평가)

  • Yun, Jin-Ju;Kang, Se-Won;Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Hyun-Woo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.197-203
    • /
    • 2020
  • BACKGROUND: Most lakes have increased concerns about water pollution due to the inflow of non-point sources caused by human activities. Therefore, the lake water quality survey was conducted in order to propose effective plans for water quality management by analyzing the characteristics of lakes and the change of water quality. METHODS AND RESULTS: In order to investigate the physicochemical water quality in Daedong lake, water quality analysis was undertaken from July 2018 to June 2019. Water temperature was ranged from 7.8 to 34.3℃ and pH varied from 6.9 to 10.2. The concentration of Dissolved oxygen, Suspended solid, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were 5.6 ~ 17.2 mg/L, 2.4 ~ 35.3 mg/L, and 4.5 ~ 15.1 mg/L, and 0.9 ~ 2.8 mg/L, respectively. The Total Nitrogen (T-N) concentration ranged from 0.974 ~ 2.126 mg/L, and Total Phosphorus (T-P) concentration ranged from 0.014 ~ 0.057 mg/L. The Chlorophyll-a (Chl-a) ranged from 2.7 ~ 37.9 mg/㎥. Through Carlson TSIm assessment using T-P and Chl-a results, evaluating trophic state, Daedong lake was evaluated as mesotrophic. CONCLUSION: Water pollution management plan needs such as nutrient removal technology and nonpoint source management for prevention of eutrophication in Daedong lake.

A Study on the Hydraulic Characteristic Extraction of Lake using GSIS (GSIS를 이용한 호수의 수리학적 특성 추출에 관한 연구)

  • 성동권;전형섭;박성규;정영동;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2000
  • The water quality of inland stream is polluting with industrialization and urbanization, and with that water quality of lake also deteriorated, to manage water quality pollution problem of lake, new water quality management method is needed. As a pilot study of the method that manage water quality of lake using GSIS(Geo-Spatial Information System), we study the method which automatically extract the hydraulic characteristic informations of lake in GSIS environment. Also, as an example of practical use of the extracted hydraulic characteristic information of lake, we carry out the characteristic analysis of waterbody flow using finite different method. With the automation the extraction procedure of hydraulics characteristic information needed in characteristic analysis of waterbody flow, we carried out the analysis efficiently. Particularly, with the extraction of section information on lake not in layout form, in analyzable form, we make the analysis that section information of lake was indispenably required(e.g. stratification analysis) possible in GSIS environment.

  • PDF

Analysis of Alteration for Water Level and Velocity in Tidal Artificial Lake Installed Water Gate and Adoption of Proper Channel Width (적정 수로 폭의 선정과 수문이 설치된 인공 해수호수의 수위 및 유속의 변화 분석)

  • Jang, Changhwan;Kim, Hyoseob;Jang, Sukhwan;Ihm, Namjae
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2012
  • Tidal artificial lake capable of inflow and outflow of seawater is planned for waterfront and eco-friendly space at Songdo, Incheon, Korea. This study for hydrodynamic behaviors of tidal artificial lake was carried out and predicted about water level and velocity within the lake corresponding to width of channel or waterway using by 1 dimensional numerical model(CEA) and 2 dimensional numerical model(FLOW2DH). As a result, the proper width, 100.0m of the channel between the lake and the open sea was calculated reasonable conclusions such as tidal phase lag and maximum velocity from CEA. Also, water level and velocity of each point within the lake was predicted and compared to the measured data from FLOW2DH. FLOW2DH was added to the gate control case for maintenance and administration purpose of the lake and obtained the results that the velocity was decreased by approximately 20% at flood and 50% at ebb than the case without gate control.