• Title/Summary/Keyword: Lake Youngsan

Search Result 24, Processing Time 0.026 seconds

Trophic State and Water Quality in Major Lakes of the Sumjin and Youngsan River Systems (섬진강 ${\cdot}$ 영산강 수계 주요 호소의 수질 동향과 영양상태 조사)

  • Yi, Sang-Hyon;Chang, Nam-Ik;Kim, Jong-Min;Kim, Hyun-Ku;Cho, Young-Gwan;Jeong, Jin;Sin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.296-309
    • /
    • 2006
  • This study aimed to analyze water quality (temperature, secchi depth, DO, $NH_4$, $NO_3$, $PO_4$, TN, TP, chlorophyll a) and trophic state index during the period of year 2000 ${\sim}$ 2004 in Lake Juam, Lake Dongbok and Lake Youngsan. Lakes Juam and Dongbok except Lake Youngsan were stratified during warm seasons. Water turbidity estimated by secchi disk depth was the highest in Lake Youngsan compared with other lakes. DO concentrations were low in the bottom water when chlorophyll a was high in Lake Juam and Dongbok. Nutrient concentrations were higher in Lake Youngsan than other lakes whereas chlorophyll a was highest in Lake Dongbok. Lake Youngsan was the most eutrophic compared to other two lakes based on the Trophic State Idex (TP) and TSI (SD), The TSI (CHL) was high but the TSI (TP) were low in Lake Juam and Dongbok. These results suggest phytoplankton may be limited by phosphates (P) in Lake Juam and Dongbok whereas light availability in the water column may affect growth of phytoplankton in Lake Youngsan.

Coupled Operation of the Lake Youngsan and Yeongam for the Flood Control in the Downstream of the Youngsan River (영산강 하류부 홍수조절을 위한 영산호-영암호 연계운영 방안)

  • Kim, Dae Geun;Lee, Jae Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.297-306
    • /
    • 2008
  • In order to determine the effects of lock gate expansion at the Lake Youngsan and Yeongam as well as increase in the width of the connecting channel of the two lakes on flood control downstream of the Youngsan River, an unsteady hydraulic flood routing was conducted by combining the Lake Youngsan and Yeongam as a single connected system. The coupled operation of the two lakes was found to have little effect when the widths of the lock gates and the connecting channel are set at the current level. It was also found that increasing the width of the connecting channel as well as the lock gate of the Lake Yeongam is an effective means of reducing the stage of the Lake Youngsan, whereas an increase in the width of the Lake Youngsan's lock gate had a relatively smaller effect. The extended width of the connecting channel leads to a rise in the stage of the Lake Yeongam. In order to reduce the elevated stage, The Lake Yeongam's lock gate must be expanded along with the Lake Yeongsan's lock gate. The analysis found that the stage of the Lake Yeongsan can be effectively controlled through adjustment of opening and shutting criteria of the connecting channel's lock gate, when diversion discharge between the lakes is increased as a result of expanding the width of the connecting channel.

A study on the algal growth-related water quality of the Sangsa lake

  • Kim, Jong-Min;Lee, Jong-Chun;Chang, Nam-Ik;Ryu, Seong-Ho;Shin, Dae-Yoon
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.27-27
    • /
    • 2004
  • We studied algal growth-related water quality of the Sangsa lake which is the drinking water reservoir for the south-eastern region of Jeonnam province. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 22.7 mg/l in the surface layer. Highly turbid surface water of 15 NTU was also caused by Perdinium bloom. Cyanobacterial growth was effectively prohibited by dominant growth of Peridinium in the Sangsa lake, otherwise confronted with cyanobacterial bloom. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated. This paper deals with some details of water quality changes with algal growth in the Sangsa lake past two years.

  • PDF

A study on the algal growth-related water quality of the Dongbok laka

  • Kim, Jong-Min;Kim, Hyun-Ku;Huh, Yu-Jeong;Jeong, Jong-Bum
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.25-25
    • /
    • 2004
  • We studied algal growth-related water quality of the Dongbok lake which is the drinking water reservoir for the Gwangju municipality. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 13.7 mg/I in the surface layer. Highly turbid surface water with 46.8 mg/I of SS was also caused by Perdinium bloom. Peridinium bloom decisively eliminated cyanobacterial growth in the lake, otherwise cyanobacterial bloom resulted. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated in terms of water quality. This paper deals with some details of water quality changes with algal growth in the Dongbok lake past two years.

  • PDF

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.

Spatio-temporal Fluctuations of Size-structured Phytoplankton over an Annual Cycle in the Youngsan Lake

  • Song, Eun-Sook;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.530-540
    • /
    • 2008
  • The temporal and spatial variations of size-structured phytoplankton dynamics in Youngsan Lake were investigated to explore potential mechanims controlling the dynamics in the Youngsan Lake. Field data were collected monthly from February to October, 2003 at 6 stations along the axis of Youngsan Lake. In this study, phytoplankton (chlorophyll $\alpha$) were categorized into three size classes: micro-size ($>20{\mu}m$), nano-size ($2{\sim}20{\mu}m$) and pico-size ($<20{\mu}m$). Water temperature, light attenuation coefficients, PAR (photosynthetically active radiation) and suspended solids were measured to analyze relationship between physical-chemical properties and size structure of phytoplankton. Phytoplankton blooms developed during March, July and October in the upper region of the main stem whereas small-scaled spring bloom was observed in the lower region. The scales of phytoplankton blooms were higher in the upper regions than the lower region and blooms were predominated by micro-size class in upper region but predominated by nano-size class in lower region. Growth of size-structured phytoplankton appeared to be controlled by rather light availability than temperature-dependant metabolisms in the system. Phytoplankton growth may be also supported by ambient nutrients available in the water column from analyses of chlorophyll $\alpha$ vs. nutrient concentrations including nitrite+nitrate and orthophosphate. Growth of nano-sized phytoplankton alone appeared to be supported by orthophosphate as well as nitrite+nitrate indicating that response of phytoplankton to nutrient inputs may be size-dependent.

Analysis of Tidal Phenomena in chunnam the Naju Lake and Youngsan River (전남 나주호와 영산강 지류에 나타나는 조석현상의 분석)

  • Cho, Ju-Whan;Im, Kwang-Heuyk
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.168-173
    • /
    • 2000
  • To investigate the characteristics of tides in the Naju Lake and Youngsan River, we measured the water level at the Naju Lake for one month (from 30 Dec. 1997 to 27 Jan. 1998) and at several points along the Youngsan River. We found that there are predominant waves with periods of semidiurnal and diurnal tides. The amplitudes of M$_2$, S$_2$, O$_1$ and K$_1$ calculated by harmonic analysis are 0.56, 0.39, 0.48,0.43mm, respectively. The tidal ranges along the Youngsan River, which are almost coincident with the tidal variation of Mokpo, are from 4mm to 18mm depending upon the locations and the direction and that of six-hours period in the north-south direction.

  • PDF

Coupled Operation of the Lake Youngsan, Yeongam and Kumho for the Flood Stage Control in the Downstream of the Youngsan River (영산강 하류부 홍수위 조절을 위한 영산호-영암호-금호호 연계운영)

  • Kim, Dae Geun;Kim, Dong Ok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.277-284
    • /
    • 2010
  • To examine how the width of connecting channels, the width of the Kumho lock gate, and the opening/shutting criteria of the Yeongam connecting channel lock gate affect the flood stage of Lake Yeongsan, Lake Yeongam, and Lake Kumho, located in the lower reaches of the Yeongsan River, unsteady flood routing was performed by connecting the three lakes into a single interlinked system. The coupled operation of the three lakes was found to have little effect when the widths of the lock gates and the Yeongam and Kumho connecting channels are set at the current level. The most effective way to lower the water level in Lake Yeongsan was to widen the Yeongam connecting channel, but this caused the water level in Lake Yeongam to rise. To lower the increased water level in Lake Yeongam by utilizing the water storage capacity of Lake Kumho, it was necessary to widen both the Kumho lock gate and the Kumho connecting channel. It was found that the optimum opening/shutting criterion for the Yeongam connecting channel lock gate is approximately EL.(+)0.8 m under the simulated conditions used in this study and the criterion allows of maximal lowering of the water levels in Lake Yeongam and Lake Kumho while maintaining a near-constant water level in Lake Yeongsan.

A Comparative Study on Limno-biological Aspects of the Dammed Lakes in the Youngsan River in Korea - Centering on Fish Fauna - (영산강 수계 댐호의 육수생물학적 비교연구 ( 1 ) - 어류상을 중심으로 -)

  • Nah, Chang-Soo
    • The Korean Journal of Ecology
    • /
    • v.12 no.1
    • /
    • pp.51-65
    • /
    • 1989
  • Some aspects of limno-biology of the five dammed lakes such as Tamyang, Changsong, Kwangju, Naju, and Youngsan Lake along the Yongsan River were investigated from June 1986 to July 1988 for the comparison on the lentic ecosystems in relation to the fish fauna. Sixty four fish species representing 48 genera and 21 families of fishes were collected in these dammed areas, which included 29 species of the family Cyprinidea and 40 speaies of the primary fresh-water fishes. Among, these, 12 species such as Rhodeus Acheilognothus yamatsutae, A canathorhodeus gracilis, Sarcocheilichthys nigripinis morii, S. variegatus wakiyae, Gnathopogon strigatus, Squalidus gracilis majimae, Microphysogobio yaluensis, Cobitis longicorpus sp, Liobagrus mediadiposalis and Odontobutis platycephala are enddmic to Korea. Leiocassis nitidus and Gasterosteus aculeatus which occur in these water areas take note of the zooge rographic study of Korea. The fish species in each of the dammed lakes is in proportion of the scale of the lakes such as 32 species in Thamyang, 40 species in Changsong, 24 species in Kwangju, 35 species in Jaju, and 52 species in Yongsan Lake. The dominant fish species of the 4 upper dammed lakes of Thamyang, Changsong, Kwangju and Naju Lake are Zacco platypus and Rhodeus uyekii, while those of Youngsan Lake are Hemiculter eigenmanni and Carassius auratus. This difference of fish species of those areas suggests that the upper damed lake differ from the lower dammed lakes in the habitable condition of fishes. The migratory fish species have significantly declined and will continue to decline in both population size and number of species in the dammed lakes in near future as a result of the dam construction barriers in the river estuary. The major migratory fishes of this water area are as follows; Anguilla japonica, Plecoglossus altivelis, Hypomesus olidus, Gasterosteus aculeatus, Konosirus Punctatus, Coilia ectens, Hemirhampus sajori, Mugil cephalus. Acanthogobius flavimanus, and Takifugu ocellatus.

  • PDF