• 제목/요약/키워드: Lake

검색결과 2,155건 처리시간 0.028초

팔당호의 영양염류 장기변동 추세분석 (Long-Term Trend Analysis of Nutrient Concentrations at Lake Paldang)

  • 장승현;정인영;김성미;양희정;김성수;공동수
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.295-305
    • /
    • 2009
  • The purpose of this study was to understand of water quality characteristics of lake Paldang, especially at a certain representative site, right in front of Paldang dam ($P_2$ site) and to propose the directions of water quality management of lake Paldang. Water characteristics at $P_2$ site was investigated by principle components analysis and the Pearson correlation coefficient analysis. Also, seasonality was identified by the Kruskal-Wallis test and long term trend of nutrients and chlorophyll-a was analyzed by seasonal decomposition method at lake Paldang statistically. The primary factor affecting on water quality at $P_2$ site was identified as nutrients, while physical parameters, such as rainfall and inflow rate were also important factors. At the result of linear regression analysis particulate organic phosphorus (POP) vs total phosphorus (TP) showed very high correlation of 0.78. TP loading was increased annually from 1995 to 2006. Chlorophyll-a and nutrients show seasonality at $P_2$ site. Long term trend of Chlorophyll-a was increased by increase of TP at lake Paldang.

Seasonal Dynamics of Pathogenic Microorganisms (Cryptosporidium, Giardia and Fecal Bacteria) in an Artificial Lake Ecosystem (Sangsa Lake, Korea)

  • Kim, Sung-Hyun;Kim, Hyun-Woo;Lee, Hak-Young;Kahng, Hyung-Yeel
    • Journal of Ecology and Environment
    • /
    • 제31권2호
    • /
    • pp.161-165
    • /
    • 2008
  • This study was performed for the purpose of monitoring monthly levels of two pathogenic microorganisms, Cryptosporidium and Giardia, from November 2005 to August 2007 in Sangsa Lake. Water temperatures, pH and DO fluctuated seasonally at the study site. Annual mean values of BOD, COD and SS were $0.8\;mg\;L^{-1}$, $2.3\;mg\;L^{-1}$ and $1.9\;mg\;L^{-1}$ respectively. Although there was distinct seasonal variation in water chemistry and chlorophyll $\underline{a}$ concentration, the lake generally contains low concentrations of nutrients and chlorophyll $\underline{a}$. The relative abundance of coliform bacteria was always greater than that of fecal coliform. The fecal coliform bacteria comprised $8.5{\sim}22.1%$ of total coliform bacteria. Seasonal analysis of Cryptosporidium and Giardia levels in the study site showed that in winter (November through February), Cryptosporidium oocysts and Giardia cysts were most abundant ($1.1{\sim}1.8\;{\times}\;10\;cells\;L^{-1}$ and $3.8{\sim}5.1\;{\times}\;10\;cells\;L^{-1}$, respectively), while in summer (July through September) the abundance was lowest ($0.0{\sim}0.3\;{\times}\;10\;cells\;L^{-1}$ and $0.9{\sim}2.9\;{\times}\;10\;cells\;L^{-1}$, respectively). Molecular identification revealed two subtypes of Cyrptosporidium parvum in Sangsa Lake.

화진포 현생퇴적물의 퇴적환경에 관하여 (Depositional Environments Of The Recent Sediments In The Hwajinpo Lake, Gangweondo, Korea)

  • 정우열;박용안
    • 한국해양학회지
    • /
    • 제11권2호
    • /
    • pp.64-70
    • /
    • 1976
  • 기수호인 화진포에 대한 생태학적인 연구가 여러 차례에 걸쳐 실시된 바 있으나( 홍사오외 1969; 엄규백, 1971, 1973; 전승관 외 1969; 변충규 외 1975) 현생퇴적물에 대한 퇴적환경적 연구는 실시된 바 없다. 따라서 본 연구에서는 화진포의 퇴적물에 대한 조직표준치와 분포 특성 및 호수퇴적물중에 포함된 점토광물의 종류와 호수퇴적물의 화학성분을 퇴적과정의 퇴적요인으로 하여 본 역의 현생퇴적환경특성을 밝히고자 한다.

  • PDF

시화호의 중금속 오염과 산화-환원 상태의 공간적 차이 (Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea)

  • 현상민;김은수;팽우현
    • 한국환경과학회지
    • /
    • 제13권5호
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

팔당호의 어류상과 군집동태 (Fish Fauna and Community Structure in Lake Paldang and its Inflows)

  • 변명섭;박혜경;이완옥;공동수
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.206-213
    • /
    • 2008
  • Fish fauna and community structure were investigated at 2003, 2004 and 2006 in Lake Paldang and its inflows. In this survey, we collected 54 species belong to 14 families. Family Cyprinidae take 51.9% (28 species), Cobitidae and Gobiidae occupied 7.4% (each 4 species), respectively. E. erythropterus (11.8%) was dominant species and L. macrochirus (10.2%), designated as an ecosystem-invasive alien fish species by Ministry of Environment, M. yaluensis (9.1%), Z. platypus (7.7%) and R. brunneus (6.7%) were dominated in turn. H. molitrix, C. lutheri, P. altivelis, S. microdorsalis, L. costata. S. gracilis majimae, A. rivularis, P. koreanus. S. scherzeri and O. platycephala were rare species (less than 0.1% in relative abundance). In-lake area, 36 species of fishes belonging to 11 families were collected, and 48 species of 13 families were from inflows. The number of Korean endemic species were 19 species (35.2%), and 4 kinds of exotic species (7.4%), that is, C. cuvieri, H. molitrix, L. macrochirus and M. salmoides were found at this survey area. It was revealed by the analysis of fish community that diversity and richness indices were prominent at tributaries, and dominance index was high at the main body of Lake Paldang. Fish fauna showed rapid decline after dam construction which make the mid-Han river systems to lentic ecosystem, so many of meander-riffle fishes were disappeared dramatically. But after 1990s when installation of small scale wastewater treatment plants started in watershed, the water quality of small tributaries was improved. And also, expansion of the natural macrophytic vegetation of littoral zone should contribute to the development of diverse fish fauna in Lake Paldang.

人工湖 生産層에서 植物플랑크톤의 질소화합물 동화속도 (In situ Assimilation Rate of Nitrogenous Compounds by Phytoplankton in the Euphotic Layer of Reservoirs)

  • Mitamura,Osamu;Kyu-Song Cho;Sa-Uk Hong
    • The Korean Journal of Ecology
    • /
    • 제16권3호
    • /
    • pp.261-273
    • /
    • 1993
  • The nitrogen assimilation rate of nitrogenous nutrients by reservior phytoplankton was masured in the in situ condition in the euphotic layer of Lakes Soyang, Chuncheon and Uiam located on the upper reaches of the North Han River System in August, 1983, Korea. The assimilation rate of ammonia, nitrate and urea nitrogen in surface water was 13, 2 and $13{\mu}g$ at. $N{\cdot}m^{-3}{\cdot}(12:10~18:15)^{-1}$ in Lake Soyang, 325, 27 and $59{\mu}g$ at. $N{\cdot}m^{-3}{\cdot}(12:30~18:30)^{-1}$ in Lake Chuncheon, and 174, 12 and $45{\mu}g$ at. $N{\cdot}m^{-3}{\cdot}(12:30~19:30)^{-1}$ in Lake Uiam. Ammonia and urea were perferntially utilized by reservoir phytoplankton. The dark/light ratios of nitrate assimilation were much lower than those of ammonia and urea assimilation of nitrate showed little contribution. The primary productuin was estimated as 59mg $C{\cdot}m^{-2}{\cdot}day^{-1}$ and 6.9mg $N{\cdot}m^{-2}{\cdot}day^{-1}$ in Lake Spyang, 217mg C{\cdot}m^{-2}{\cdot}day^{-1}$ and 26mg N{\cdot}m^{-2}{\cdot}day^{-1}$ in Lake Chuncheon, and 110mg C{\cdot}m^{-2}{\cdot}day^{-1}$ and 13mg N{\cdot}m^{-2}{\cdot}day^{-1}$ in Lake Uiam, with production ratios of 8.6, 8.4 and 8,4, respectively. The turnover time o ammonia and urea in the upper euphotic layer was 2 to 47 days and 4 to 38 days, respectively. Nitrate required much longer periods. In the euphotic layer of reservoirs, ammonia and urea played signigicant roles in the biogeoKDICical nitrogen metabolism.

  • PDF

Foraminifera as an Indicator of Marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • 한국제4기학회지
    • /
    • 제19권2호
    • /
    • pp.35-37
    • /
    • 2005
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west coast of Korea, were collected to evaluate the effect of the outfall on benthic foraminifera. Heavy metal (Cu and Zn) polluted eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifera, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifera abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants from the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifera, low number of A. beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared to the downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-pyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifera do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-50 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

EFDC모형을 이용한 새만금호 내 해수유통량에 따른 오염물질 혼합 변화 모의 (Simulations of Pollutant Mixing Regimes in Seamangeum Lake According to Seawater Exchange Rates Using the EFDC Model)

  • 정희영;류인구;정세웅
    • 한국농공학회논문집
    • /
    • 제51권6호
    • /
    • pp.53-62
    • /
    • 2009
  • The EFDC (Environmental Fluid Dynamics Code), a numerical model for simulating three-dimensional (3D) flow, transport, and biogeochemical processes in surface water systems including rivers, reservoirs, and estuaries, was applied to assess the effect of sea water and fresh water exchange rates ($Q_e$) on the mixing characteristics of a conservative pollutant (tracer) induced from upstreams and salinity in Saemangeum Lake, Korea. The lake has been closed by a 33 km estuary embankment since last April of 2006, and now seawater enters the lake partially through two sluice gates (Sinsi and Garyuk), which is driving the changes of hydrodynamic and water quality properties of the lake. The EFDC was constructed and calibrated with surveyed bathymetry data and field data including water level, temperature, and salinity in 2008. The model showed good agreement with the field data and adequately replicated the spatial and temporal variations of the variables. The validated model was applied to simulated the tracer and salinity with two different gate operation scenarios: RUN-1 and RUN-2. RUN-1 is the case of real operation condition ($Q_e=25,000,000\;m^3$) of 2008, while RUN-2 assumed full open of Sinsi gate to increase $Q_e$ by $120,000,000\;m^3$. Statistical analysis of the simulation results indicate that mixing characteristics of pollutants from upstream can be significantly affected by the amount of $Q_e$.

인공 수초재배섬에서 세균의 활성과 세균 군집 구조 (The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI))

  • 전남희;박혜경;변명섭;최명재
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.676-682
    • /
    • 2007
  • The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.

시화호 내 수질 및 어패류의 중금속 분포 연구 (Concentration of Heavy Metals in Seawater, Fish, and Shellfish at Lake Shihwa)

  • 이규영;이승훈;오세훈;최민지;이용우
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.157-163
    • /
    • 2018
  • This study aims to determine the pollution levels of nine kinds of heavy metals (As, Cd, Cu, Cr, Hg, Mn, Ni, Pb, and Zn) in Lake Shihwa, which is susceptible to the inflow of pollutants, and the levels of heavy metal exposure in its fish and shellfish. Shihwa Lake's water quality did not exceed the short-term standard for protection of marine ecosystems, but concentrations of As, Cu, Cr, Hg, Ni, and Zn exceeded the long-term standard for protection of a marine ecosystem. In comparison to findings in prior research, performed in 2010, levels of Cr, Ni, As, and Zn are now 4.1 times lower. However, when compared to Saemangeum Lake, the environment is similar to that of Lake Shihwa, Cu, Ni, Hg, Mn, and Zn were 244.4 times higher. The levels of Pb, Cd, and Hg in fish's muscles did not exceed the average values set by the marine safety standard. However, when compared to the fish from the Korean coast, the levels of heavy metals were 9.7 times higher, on average. The levels of heavy metals in fish's livers were on average 26.8 times higher than in the muscles. In the case of shellfish, the levels of Pb, Cd, and Hg did not exceed the standard values, but in comparison to the shellfish from the south coast, the levels of heavy metals were 6.2 times higher on average. In particular, Mn (153.5 times higher) from fish and Cd (14.7 times higher) from shellfish were found in high amounts, indicating a concerning level of these specific heavy metals.