• Title/Summary/Keyword: Lagrangian particle tracking model

Search Result 35, Processing Time 0.023 seconds

Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean (북극해에서 입자추적 방법을 이용한 유빙 추적 연구)

  • Park, GwangSeob;Kim, Hyun-Cheol;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1299-1310
    • /
    • 2018
  • In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking. Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay (수치모델을 이용한 진해만 내 소규모 내만의 해수교환율 비교)

  • Kim, Nam Su;Kang, Hoon;Kwon, Min-Sun;Jang, Hyo-Sang;Kim, Jong Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.74-85
    • /
    • 2016
  • For the assessment of seawater exchange rates in Danghangpo bay, Dangdong bay, Wonmun bay, Gohyunsung bay, and Masan bay, which are small-scale inner bays of Jinhae bay, an EFDC model was used to reproduce the seawater flow of the entire Jinhae bay, and Lagrange (particle tracking) and Euler (dye diffusion) model techniques were used to calculate the seawater exchange rates for each of the bays. The seawater exchange rate obtained using the particle tracking method was the highest, at 60.84%, in Danghangpo bay, and the lowest, at 30.50%, in Masan bay. The seawater exchange rate calculated based on the dye diffusion method was the highest, at 45.40%, in Danghangpo bay, and the lowest, at 34.65%, in Masan bay. The sweater exchange rate was found to be the highest in Danghangpo bay likely because of a high flow velocity owing to the narrow entrance of the bay; and in the case of particle tracking method, the morphological characteristics of the particles affected the results, since once the particles get out, it is difficult for them to get back in. Meanwhile, in the case of the Lagrange method, when the particles flow back in by the flood current after escaping the ebb current, they flow back in intact. However, when a dye flows back in after escaping the bay, it becomes diluted by the open sea water. Thus, the seawater exchange rate calculated based on the dye diffusion method turned out to be higher in general, and even if a comparison of the sweater exchange rates calculated through two methods was conducted under the same condition, the results were completely different. Thus, when assessing the seawater exchange rate, more reasonable results could be obtained by either combining the two methods or selecting a modeling technique after giving sufficiently consideration to the purpose of the study and the characteristics of the coastal area. Meanwhile, through a comparison of the degree of closure and seawater exchange rates calculated through Lagrange and Euler methods, it was found that the seawater exchange rate was higher for a higher degree of closure, regardless of the numerical model technique. Thus, it was deemed that the degree of closure would be inappropriate to be used as an index for the closeness of the bay, and some modifications as well as supplementary information would be necessary in this regard.

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

Numerical Simulation of the Sea Water Circulation Characteristics according to the development phases of Busan Port (부산 북항 개발전후의 해수순환특성 수치모의)

  • Moon, Yeong-Ki;Yoo, Chang-Il;Yoon, Han-Sam
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.89-94
    • /
    • 2009
  • This study aims to examine the the characteristics if the sea water circulation in related to the change of the water exchange rate according to the the development phases of Busan Port. To clarify the characteristics, the water exchange caused by construction if new-port and river discharge conditions was examined by the numerical experiments using the Lagrangian particle tracking model based on 2-D shallow water equation. This study deals with the charge of flow field and water exchange after redevelopment using numerical simulation technique, based on the field observation and 4 rivers discharge flow. As a result if numerical simulation, Variation if current velocity in Busan North Port is almost nothing before and after construction. Water exchange of channel in area of redevelopment is a little. Futhermore, the tidal exchange had a tendency to be small both before and after redevelopment by 60%.

  • PDF