• Title/Summary/Keyword: Lagrangian functional

Search Result 22, Processing Time 0.029 seconds

COUNING g-ESSENTIAL MAPS ON SURFACES WITH SMALL GENERA

  • Hao, Rongxia;Cai, Junliang;Liu, Yanpel
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.621-633
    • /
    • 2002
  • This paper provides some functional equations and parametric expressions of f-essential maps on the projective plane, on the torus and on the Klein bottle with the size as a parameter and gives their explicit formulae for exact enumeration further.

MONOTONIC OPTIMIZATION TECHNIQUES FOR SOLVING KNAPSACK PROBLEMS

  • Tran, Van Thang;Kim, Jong Kyu;Lim, Won Hee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.611-628
    • /
    • 2021
  • In this paper, we propose a new branch-reduction-and-bound algorithm to solve the nonlinear knapsack problems by using general discrete monotonic optimization techniques. The specific properties of the problem are exploited to increase the efficiency of the algorithm. Computational experiments of the algorithm on problems with up to 30 variables and 5 different constraints are reported.

ON OPTIMAL CONTROL OF A BOUNDARY VALUE PROBLEM

  • Kim, Hongchul;Rim, Gye-Soo
    • Korean Journal of Mathematics
    • /
    • v.6 no.1
    • /
    • pp.27-46
    • /
    • 1998
  • We are concerned with an optimal control problem governed by a Poisson equation in which body force acts like a control parameter. The cost functional to be optimized is taken to represent the error from the desired observation and the cost due to the control. We recast the problem into the mixed formulation to take advantage of the minimax principle for the duality method. The existence of a saddle point for the Lagrangian shall be shown and the optimality system will be derived therein. Finally, to attain an optimal control, we combine the optimality system with an operational technique. By achieving the gradient of the cost functional, a convergent algorithm based on the projected gradient method is established.

  • PDF

The Influence of Corner Stress Singularities on the Vibration of Rhombic Plates Having Various Edge Conditions (다양한 연단조건을 갖는 마름모꼴형 평판의 진동에 대한 모서리 응력특이도의 영향)

  • Kim, Joo-Woo;Cheong, Myung-Chae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.363-374
    • /
    • 2000
  • An accurate method is presented for vibrations of rhombic plates having three different combinations of clamped, simply supported, and free edge conditions. A specific feature here is that the analysis explicitly considers the moment singularities that occur in the two opposite corners having obtuse angles of the rhombic plates. Stationary conditions of single-field Lagrangian functional are derived using the Ritz method. Convergence studies of frequencies show that the corner functions accelerate the convergence rate of solutions. In this paper, accurate frequencies and normalized contours of the vibratory transverse displacement are presented for highly skewed rhombic plates, so that a significant effect of corner stress singularities nay be understood.

  • PDF

Sensitivity and optimisation procedures for truss structures under large displacement

  • Bothma, A.S.;Ronda, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1999
  • The work presented here focuses on the development of suitable discretised formulations, for large-displacement shape and non-shape design sensitivity analysis (DSA), which enable the straightforward incorporation of structural optimisation into established finite element analysis (FEA) codes. For the generalised displacement-based functional the design sensitivity vector has been expressed in terms of displacement sensitivity. The Total Lagrangian formulation is utilised for modelling of large deformation of truss structures. The variational formulation of the sensitivity analysis procedure is discretised by using "pseudo" - finite elements, Results are presented for the sensitivity analysis and optimisation of standard truss structures. For the purposes of this work, the analysis and optimisation procedures outlined below are incorporated into the FEA code ABAQUS.

Sensitivity Analysis of the Zigzag Switch under Acceleration and Centrifugal Forces (가속력과 원심력을 받는 지그잭 스위치의 민감도 해석)

  • 김경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1067-1072
    • /
    • 1996
  • Sensitivity analysis of the cylindrical zigzag cams under acceleration and centrifugal forces is performed. A Lagrangian method is used to determine the mechanism constant of zigzag track, And the equation of motion for cylindrical zigzag cam under rectangular pulse is derived by the governing equations of a single spring mass system. The ratio of the drive force tn resisting force is derived by angular acceleration, centrifugal force and setback force on the operation of the munition. The theoretical sensitivity curves for 3 models are analyzed. And experiments for 3 models are conducted to check safe and functional zone. Zigzag cam types can be satisfied all major design requirements for switch system of munition.

  • PDF

A direct treatment of Min-Max dynamic response optimization problems (Min-Max형 동적 반응 최적화 문제의 직접 처리기법)

  • 박흥수;김종관;최동훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 1993
  • A direct treatment of the min-max type objective function of the dynamic response optimization problem is proposed. Previously, the min-max type objective function was transformed to an artificial design variable and an additional point-wise state variable constraint function was imposed, which increased the complexity of the optimization problem. Especially, the design sensitivity analysis for the augmented Lagrangian functional with the suggested treatment is established by using the adjoint variable method and a computer program to implement the proposed algorithm is developed. The optimization result of the proposed treatment are obtained for three typical problems and compared with those of the previous treatment. It is concluded that the suggested treatment in much more efficient in the computational effort than the previous treatment with giving the similar optimal solutions.

  • PDF

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures (콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법)

  • Jung, Bong-Gu;Kim, Boyoung;Kang, Jun Won;Hwang, Jin-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

Level Set Based Topological Shape Optimization Combined with Meshfree Method (레벨셋과 무요소법을 결합한 위상 및 형상 최적설계)

  • Ahn, Seung-Ho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.

Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Khan, Muhammad Shabaz;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.411-425
    • /
    • 2020
  • In this paper, the shell material has been taken as functionally graded material and their material quantity is located by the exponential volume fraction law. Moreover, the impact of ring supports around the shell circumference has been examined for their various positions along the shell axial length. These rings support restraints the radial displacement in the transverse direction. While the axial modal deformation functions have been estimated by characteristic beam functions and nature of materials used for construction of cylindrical shells. The fundamental natural frequency of cylindrical shell of parameter versus ratios of length- and height-to-radius for a wide range has been reported and investigated through the study. In addition, by increasing height-to-radius ratio resulting frequencies also increase and frequencies decrease on ratio of length-to-radius. Though the trends of frequency values of both ratios are converse to each other with three different boundary conditions. Also it is examined the position of ring supports with length-to radius ratio, height-to-radius ratio and varying the exponent of volume fraction. MATLAB software package has been utilized for extracting shell frequency spectra. The obtained results are confirmed by comparing with available literature.