• Title/Summary/Keyword: Lagrangian frame

Search Result 48, Processing Time 0.029 seconds

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Di Egidio, Angelo;Pagliaro, Stefano;Fabrizio, Cristiano;de Leo, Andrea M.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.351-375
    • /
    • 2019
  • The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

Molecular Dynamics Simulation of First-Order Phase Transition (일차 상변화 과정의 분자 동력학적 모사)

  • Lee, Jae-Yeon;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.161-166
    • /
    • 2004
  • A study of argon droplet vaporization is conducted using molecular dynamics. Instead of using traditional method such as the Navier-Stokes equation. Molecular dynamics uses Lagrangian frame to describe molecular behavior in a system and uses only momentum and position data of all molecules in the system. So every property is not a hypothetical input but a statistical result calculated from the momentum and position data. This work performed a simulation of the first-order stability for phase transition of a three dementional submicron argon droplet within quiescent environment. Lennard-Jones 12-6 potential function is used as a intermolecular potential function. The molecular configuration is examined while an initially non-sperical droplet is changed into the spherical shape and droplet evaporates or condensates.

  • PDF

Study on the Long-term Change of nitrogen in the Tidal Area of River (하천 감조부에 있어서 질소의 장기변동에 관한 연구)

  • 김원규;강주복
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.67-78
    • /
    • 1992
  • Several field surveys were conducted to investigate changes of water quality with time in a tidal river. Results indicated that nitrification process were dependent on the change of salinity and suspended solids concenttration. Therefore laboratory batch experiments were conducted, using suspended solids and sediment taken from a tidal river, to study the effect of salinity on nitrification and to estimate kinetic parameters of it in the tidal river. suspended solids and sediment were sampled at a point in the middle stream. Sediments were collect from the aerobic layer of mud. The change of nitrogen concentration with time was clearly explained with Monod groth model and kinetic parameters were obtained by curve fitting method. Changes in NH4-N, NO2-N, and NO3-N concentrations in the river ROKKAU with time were simulated well using Lagrangian reference frame and parameter values obtained in the laboratory tests. T도 mechanism of nitrification by suspended solids and sediment in a tidal river is shown to depend on tidal effects.

  • PDF

A Study on Design Optimization of Mooring Pier using Prestressed Precast Concrete Panel (프리스트레스트 프리캐스트 콘크리트 패널을 이용한 잔교식부두의 최적설계)

  • 조병완;태기호;김용철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • Recently, the area of design optimization, especially structural optimization, has been and to be a continuous active area of research. And the design optimizations of port facilities have been achieved by many other civil engineers. But the design optimization of port facilities were limited to the design optimization of the breasting dolphin. This paper invested the design optimization of mooring pier and the foundations of mooring pier was suggested considering the convenience of repair and reinforcement work. The mooring pier devised with prestressed precast concrete panel and rigid frame welded wide flange beam to steel pipe pile. To accomplish the design optimization of mooring pier, the Augmented Lagrangian Multiplier Method(ALM) of ADS(Garret N. Vanderplaats) optimization routine, BFGS method as optimizer and Golden Section Method as one dimensional search were utilized. As a result, thirty percent of material cost for construction was reduced by design optimization. The tensile stress of concrete panel and bottom flage was critical constraints under service load. So, using high strength concrete and steel will be economical. And lots of initial values must be invested to accomplish the design optimization in design procedures.

  • PDF

Pore Pressure Response around a Cone Shape Penetrating Object (콘형 관입체 주변에서 발생하는 간극수압반응)

  • 송정락
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.103-110
    • /
    • 2001
  • 관입체 주변에서 발생하는 지반의 과잉간극수압은 그 측정위치에 따라 영향을 받는 것으로 알려져 있다. 특히 관입체의 선단과 축표면에서의 간극수압반응은 상당히 다른 것으로 알려져 있다. 본 연구에서는 지반에 대한 관입시험시 주변지반에서 발생하는 간극수압의 반응에 대하여 Louisiana State University의 시험토조를 사용하여 조사하였다. 또한 시험결과를 비등방성 수정 Cam Clay 모델을 이용한 유한요소해석과 비교하였다. 본 연구로부터 관입체 주위에서 발생하는 간극수압은 예측한 바와 같이 선단부위에서 크게 나타나고, 뒤로 갈수록 작아지는 현상을 나타내었다. 이와 같은 현상은 전단에 의하여 발생한 간극수압과 압축에 의하여 발생한 간극수압의 상호간섭에 의한 것으로 나타났다.

  • PDF

Turbulent Spray Combustion due to Triplet/Split Doublet Injectors (삼중/분리 충돌형 분사특성에 따른 난류 분무연소장 해석)

  • Hwang Yong-Sok;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.211-219
    • /
    • 1998
  • Propellants pressurized and fed into the combustion chamber undergoes the mechanical, chemical combustion processes. Along with their distinctive physical characteristics, propellant combustion is typically divided into the processes; injection, atomization, mixing, vaporization and chemical reaction. These processes assumed to happen in a serial manner are strongly coupled, thereby involves formidable physical complexities. In this study a numerical experiment is attempted to simulate the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Based on Eulerian-Lagrangian frame, Navier-Stokes equation system for compressible flows is preconditioned with low Reynolds number $k-{\varepsilon}$ turbulent model and time-integrated by LU-SGS, and the sprays are described by DSF model with the characteristics initialized by experimentally determined spray characteristics. Simplified single global reaction model approximates heptane-air reaction. It was observed that FOOF split doublet injector shows better atmization with shortest residence and the FOF triplet injector produces better combustion performance.

  • PDF

Molecular Dynamics Simulation of Droplet Vaporization (분자 동력학을 이용한 액적 기화 시뮬레이션)

  • Nam, Gun-Woo;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.121-126
    • /
    • 2003
  • A study of argon droplet vaporization is conducted using molecular dynamics, instead of using traditional methods such as the Navier-Stokes equation. Molecular dynamics uses Lagrangian frame to describe molecular behavior in a system and uses only momentum and position data of all molecules in the system. So every property is not a hypothetical input but a statistical result calculated from the momentum and position data. This work performed a simulation of the complete vaporization of a three dimensional submicron argon droplet within quiescent environment. Lennard-Jones 12-6 potential function is used as a intermolecular potential function. The molecular configuration is examined while an initially non-spherical droplet is changed into the spherical shape and droplet evaporates. And the droplet radius versus time is calculated with temperature and pressure profile.

  • PDF

A Nonlinear Finite Element Formulation for Very Large Deformation based on Updated Material Reference Frame (변화되는 재료의 기준 물성치에 근거한 매우 큰 변화에 대한 비선형 유한요소의 정식화)

  • Yun, Young Muk;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.25-37
    • /
    • 1992
  • A nonlinear finite element formulation which has the capability of handling very large geometrical changes is presented. The formulation is based on an updated material reference frame and hence true stress-strain test can be directly applied to properly characterize properties of materials which are subjected to very large deformation. For the large deformation, a consistent formulation based on the continuum mechanics approach is derived. The kinematics is referred to an updated material frame. Body equilibrium is also established in an updated geometry and the second Piola-Kirchhoff stress and the updated Lagrangian strain tensor are used in the formulation. Numerical examples for very large deformation of framed structures and plane solids are analyzed for verification purposes. The numerical solutions are obtained by an incremental numerical procedure. The importance of handing material properties properly is also demonstrated.

  • PDF

A Novel Bit Allocation Method Using Two-phase Optimization Technique (2단계 최적화 방법을 이용한 비트할당 기법)

  • 김욱중;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2032-2041
    • /
    • 1998
  • In this work, we propose a novel bit allocation method that is to minimize overall distortions subject ot the bit rate constraint. We partition the original bitallocation problem into 'macroblock level bit allocation' problems that can be solved by conventional Lagrangian mutiplier methods and a 'frame level bit allocation' problem. To tackle the frame level problem, 'two-phase optimization' algorithm is used with iter-frame dependency model. While the existing approaches are almost impossible to find the macroblock-unit result for the moving picture coding system due to high computational complexity, the proposed algorithm can drastically reduce the computational loads by the problem partitioning and can obtain the result close to the optimal solution. Because the optimally allocated results can be used as a benchmark for bit allocation methods, the upper performance limit, or a basis for approximation method development, we expect that the proposed algorithm can be very useful for the bit allocation related works.

  • PDF

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF