• 제목/요약/키워드: Lagrangian Code

검색결과 85건 처리시간 0.025초

An elasto-plastic damage constitutive model for jointed rock mass with an application

  • Wang, Hanpeng;Li, Yong;Li, Shucai;Zhang, Qingsong;Liu, Jian
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.77-94
    • /
    • 2016
  • A forked tunnel, as a special complicated underground structure, is composed of big-arch tunnel, multi-arch tunnel, neighborhood tunnels and separate tunnels according to the different distances between two separate tunnels. Due to the complicated process of design and construction, surrounding jointed rock mass stability of the big-arch tunnel which belongs to the forked tunnel during excavation is a hot issue that needs special attentions. In this paper, an elasto-plastic damage constitutive model for jointed rock mass is proposed based on the coupling method considering elasto-plastic and damage theories, and the irreversible thermodynamics theory. Based on this elasto-plastic damage constitutive model, a three dimensional elasto-plastic damage finite element code (D-FEM) is implemented using Visual Fortran language, which can numerically simulate the whole excavation process of underground project and perform the structural stability of the surrounding rock mass. Comparing with a popular commercial computer code, three dimensional fast Lagrangian analysis of continua (FLAC3D), this D-FEM has advantages in terms of rapid computing process, element grouping function and providing more material models. After that, FLAC3D and D-FEM are simultaneously used to perform the structural stability analysis of the surrounding rock mass in the forked tunnel considering three different computing schemes. The final numerical results behave almost consistent using both FLAC3D and D-FEM. But from the point of numerically obtained damage softening areas, the numerical results obtained by D-FEM more closely approach the practical behaviors of in-situ surrounding rock mass.

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

이차원(二次元) 파전파(波傳波) 이론(理論)에 의한 충돌현상(衝突現狀) 해석(解析) (Two-Dimensional Wave Propagation Analysis of Impact Phenomena)

  • 이상호;안병기
    • 대한토목학회논문집
    • /
    • 제14권2호
    • /
    • pp.245-255
    • /
    • 1994
  • 충돌현상을 재현할 수 있는 이차원 파전파 컴퓨터 프로그램을 개발하였다. 불연속인 충격전면에 연속성을 부여하기 위한 기법으로 Von Neumann과 Ritchmyer가 제안한 인공점성을 수치해석시 도입하였다. 본 연구에서는 충돌물체의 재료모델로서 Von-Mises 항복함수를 이용한 탄소성 모델을 사용하였다. 개발된 컴퓨터 프로그램을 검증하기 위하여 충격을 가하는 물체와 받는 물체로 구성된 충돌현상을 재현하였다. 본 연구에서 개발된 컴퓨터 프로그램은 이차원 평면요소를 사용하였기 때문에 재현된 충돌해석 결과를 3차원에서 발생하는 실제값과 정량적으로 비교할 수는 없었으나 충돌실험시 실제로 발생하는 파괴현상을 정성적으로 분석할 수 있었다.

  • PDF

Deformation characteristics of spherical bubble collapse in Newtonian fluids near the wall using the Finite Element Method with ALE formulation

  • Kim See-Jo;Lim Kyung-Hun;Kim Chong-Youp
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.109-118
    • /
    • 2006
  • A finite-element method was employed to analyze axisymmetric unsteady motion of a deformable bubble near the wall. In the present study a deformable bubble in a Newtonian medium near the wall was considered. In solving the governing equations a structured mesh generator was used to describe the collapse of highly deformed bubbles with the Arbitrary Lagrangian Eulerian (ALE) method being employed in order to capture the transient bubble boundary effectively. In order to check the accuracy of the present FE analysis we compared the results of our FE solutions with the result of the collapse of spherical bubbles in a large body of fluid in which solutions can be obtained using a 1D FE analysis. It has been found that 1D and 2D bubble deformations are in good agreement for spherically symmetric problems confirming the validity of the numerical code. Non-spherically symmetric problems were also solved for the collapse of bubble located near a plane solid wall. We have shown that a microjet develops at the bubble boundary away from the wall as already observed experimentally. We have discussed the effect of Reynolds number and distance of the bubble center from the wall on the transient collapse pattern of bubble.

GPU를 이용한 효율적인 비압축성 자유표면유동 해석 (AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU)

  • 홍환의;안형택;명훈주
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석 (Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber)

  • 수먼;이상욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

선회하는 2차원 유연 날개의 유체-구조 상호작용 모사 (NUMERICAL SIMULATION ON FLUID-STRUCTURE INTERACTION OF A TWO-DIMENSIONAL ORBITING FLEXIBLE FOIL)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.37-45
    • /
    • 2007
  • The hybrid Cartesian/immersed boundary method is applied to simulate fluid-structure interaction of a two-dimensional orbiting flexible foil. The elastic deformation of the flexible foil is modelled based on the dynamic equation of a thin-plate. At each time step, the locations and velocities of the Lagrangian control points on the flexible foil are used to reconstruct the boundary conditions for the flow solver based on the hybrid staggered/non-staggered grid. To test the developed code, the flow fields around a flapping elliptical wing are calculated. The time history of the vertical force component and the evolution of the vorticity fields are compared with recent other computations and good agreement is achieved. For the orbiting flexible foil, the vorticity fields are compared with those of the case without the deformation. The combined effects of the angle of attack and the orbit on the deformation are investigated. The grid independency study is carried out for the computed time history of the deformation at the tip.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

지진에 의한 암석 절리면에서의 전단변위 예측 모델링 (Numerical modeling of shear displacement on rock fractures due to seismic movement)

  • 이창수;김진섭;최영철;최희주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.411-414
    • /
    • 2014
  • Numerical modeling was conducted to estimate the amount of dislocation that may occur across a frictionless fracture during an earthquake using commercial code FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions). The applied motion was calculated to represent a Richter 6.0 magnitude earthquake at distances of 2 km from the fracture. The velocity-time history was generated from Svensk $K{\ddot{a}}arnbr{\ddot{a}}anslehantering$ AB report. In the report, The velocity field resulting from an earthquake on a fault located in the near-field (2 km distance) was modelled using a finite difference program, WAVE. The stress-time history was substituted for velocity-time history to perform dynamic analysis using FLAC3D. During the earthquake, the maximum dislocation and change of shear stress were about 1 cm and 2MPa, respectively. Because the fracture is frictionless in this study, all dislocations relax to zero after the earthquake motions have ceased.

  • PDF

밀폐용기 내 입자 혼합물(ZPP와 THPP)의 연소에 대한 수치해석적 모델링 및 해석 (Numerical Modeling on the Dual Propellant Combustion in a Closed Vessel)

  • 한두희;성홍계;권미라;안길환;김준형;류병태
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.451-455
    • /
    • 2017
  • ZPP와 THPP 화약의 압력 카트리지가 밀폐용기에 장착되어 연소될 때의 현상을 반응성 오일러리안-라그랑지안 이상 유동 해석 코드를 통해 모사 하였다. ZPP와 THPP는 압력 카트리지 내에서 boron nitride 판으로 격리되어있고, ZPP만 열선에 의해 직접 점화되기 때문에 THPP의 연소지연효과가 발생할 가능성이 높다. 실험을 통한 THPP의 점화지연 측정은 힘들기 때문에 기존의 연구를 통해 검증된 수치해석 코드를 통해 점화지연에 대한 케이스 스터디를 수행하고 현상학적 분석을 수행하였다. 해석 결과 THPP의 점화지연 정도에 따라 초기 충격파의 강도가 변하여 압력선도의 초기 피크특성 뿐만 아니라 주파수에도 영향을 미친다는 것을 알 수 있었다.

  • PDF