• Title/Summary/Keyword: Lagrange's theorem

Search Result 8, Processing Time 0.025 seconds

FIBRE BUNDLE MAPS AND COMPLETE SPRAYS IN FINSLERIAN SETTING

  • Crasmareanu, Mircea
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.551-560
    • /
    • 2009
  • A theorem of Robert Blumenthal is used here in order to obtain a sufficient condition for a function between two Finsler manifolds to be a fibre bundle map. Our study is connected with two possible constructions: 1) a Finslerian generalization of usually Kaluza-Klein theories which use Riemannian metrics, the well-known particular case of Finsler metrics, 2) a Finslerian version of reduction process from geometric mechanics. Due to a condition in the Blumenthal's result the completeness of Euler-Lagrange vector fields of Finslerian type is discussed in detail and two situations yielding completeness are given: one concerning the energy and a second related to Finslerian fundamental function. The connection of our last framework, namely a regular Lagrangian having the energy as a proper (in topological sense) function, with the celebrated $Poincar{\acute{e}}$ Recurrence Theorem is pointed out.

A LOWER BOUND FOR THE NUMBER OF SQUARES WHOSE SUM REPRESENTS INTEGRAL QUADRATIC FORMS

  • Kim, Myung-Hwan;Oh, Byeong-Kweon
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.651-655
    • /
    • 1996
  • Lagrange's famous Four Square Theorem [L] says that every positive integer can be represented by the sum of four squares. This marvelous theorem was generalized by Mordell [M1] and Ko [K1] as follows : every positive definite integral quadratic form of two, three, four, and five variables is represented by the sum of five, six, seven, and eight squares, respectively. And they tried to extend this to positive definite integral quadratic forms of six or more variables.

  • PDF

NUMBER THEORETICAL PROPERTIES OF ROMIK'S DYNAMICAL SYSTEM

  • Cha, Byungchul;Kim, Dong Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.251-274
    • /
    • 2020
  • We study a dynamical system that was originally defined by Romik in 2008 using an old theorem of Berggren concerning Pythagorean triples. Romik's system is closely related to the Farey map on the unit interval which generates an additive continued fraction algorithm. We explore some number theoretical properties of the Romik system. In particular, we prove an analogue of Lagrange's theorem in the case of the Romik system on the unit quarter circle, which states that a point possesses an eventually periodic digit expansion if and only if the point is defined over a real quadratic extension field of rationals.

3D buckling analysis of FGM sandwich plates under bi-axial compressive loads

  • Wu, Chih-Ping;Liu, Wei-Lun
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.111-135
    • /
    • 2014
  • Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods (FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each field variables through the thickness are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.

Feedback Linearization Control of Container Cranes (컨테이너 크레인의 되먹임 선형화제어)

  • PARK HAHN;CHWA DONG-KYUNG;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.58-64
    • /
    • 2005
  • In this paper, a feedback linearizing anti-sway control law, using a 2-D model for container cranes, is investigated. The equations of motion are first derived from Lagrange's equation. Then, by substituting the sway dynamics into the trolley dynamics, a reduction of variables from three (trolley, hoist, sway) to two (trolley, hoist) is pursued. The anti-sway control law is designed based on the Lyapunov stability theorem. The proposed control law guarantees the uniform asymptotic stability of the closed-loop system. The simulation results of the derived control law, using MATLAB/Simulink, are compared with those of the sliding mode control law, noted in previous literature. Also, experimental results using a 3-D pilot crane are provided.

A Study on Proof of Equalities and Inequalities Using Moment of Inertia (관성능률을 이용한 등식 및 부등식의 증명에 대한 연구)

  • Han, In-Ki;Son, Jin-O;Lee, Kwang-Rok;Baek, Soo-Hean;Song, A-Rom;Chung, Ki-Young
    • Communications of Mathematical Education
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 2008
  • In this paper we study a new proof method of equalities and inequalities using moment of inertia. We analyze proof method using moment of inertia, and describe how to prove equalities and inequalities using moment of inertia.

  • PDF

A Study on Analysis of Dynamic characteristics of a High-Agility Satellite including Flexibility of a Solar panel (태양전지판의 유연성에 의한 고기동 위성의 동특성 분석 연구)

  • Kim, Yongha;Kang, Kyunghan;Kim, Hyunduk;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Recently, there are a number of studies over dynamic analysis for minimizing vibration of flexible structures such as solar panel for agility of high-agility satellite. The traditional studies perform dynamic analysis of a solar panel assumed as rigid structure since the stiffness of solar panel is higher than the stiffness of solar panel's hinge spring. However, there are vibrations that have modes of bending and torsion when high-agility satellite rotate speedily. This vibrations result in delaying safety time of satellite or degrading image quality. This paper presents dynamic analysis's technique of satellites including the spring hinge of solar panel and flexible structural solar panel's effects described as the linear equation of motion using Lagrange's theorem, and verifies the validity of an established dynamic analysis's technique of satellites by comparing the finite element method. In addition high-agility satellite's dynamic characteristics of a torque profile are analyzed from the established dynamic analysis's technique of satellites.

Optimal Design of a High-Agility Satellite with Composite Solar Panels

  • Kim, Yongha;Kim, Myungjun;Kim, Pyeunghwa;Kim, Hwiyeop;Park, Jungsun;Roh, Jin-Ho;Bae, Jaesung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.476-490
    • /
    • 2016
  • This paper defines mode shape function of a composite solar panel assumed as Kirchhoff-Love plate for considering a torsional mode of composite solar panel. It then goes on to define dynamic model of a high-agility satellite considering the flexibility of composite solar panel as well as stiffness of a solar panel's hinge using Lagrange's theorem, Ritz method and the mode shape function. Furthermore, this paper verifies the validity of dynamic model by comparing numerical results from the finite element analysis. In addition, this paper performs a dynamic response analysis of a rigid satellite which includes only natural modes for solar panel's hinges and a flexible satellite which includes not only natural modes of solar panel's hinges, but also structural modes of composite solar panels. According to the results, we confirm that the torsional mode of solar panel should be considered for the structural design of high-agility satellite. Finally, we performed optimization of high-agility satellite for minimizing mass with solar panel's area limit using the defined dynamic model. Consequently, we observed that the defined dynamic model for a high-agility satellite and result of the optimal design are very useful not only because of their optimal structural design but also because of the dynamic analysis of the satellite.