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FIBRE BUNDLE MAPS AND COMPLETE SPRAYS IN
FINSLERIAN SETTING

MIRCEA CRASMAREANU

ABSTRACT. A theorem of Robert Blumenthal is used here in order to ob-
tain a sufficient condition for a function between two Finsler manifolds
to be a fibre bundle map. Our study is connected with two possible con-
structions: 1) a Finslerian generalization of usually Kaluza-Klein theories
which use Riemannian metrics, the well-known particular case of Finsler
metrics, 2) a Finslerian version of reduction process from geometric me-
chanics. Due to a condition in the Blumenthal’s result the completeness
of Euler-Lagrange vector fields of Finslerian type is discussed in detail
and two situations yielding completeness are given: one concerning the
energy and a second related to Finslerian fundamental function. The con-
nection of our last framework, namely a regular Lagrangian having the
energy as a proper (in topological sense) function, with the celebrated
Poincaré Recurrence Theorem is pointed out.

Introduction

Only suggested by B. Niemann in his “Habilitationvortrag” (1854) and re-
discovered by P. Finsler in 1918, the Finsler manifolds became recently a very
much alive research domain in differential geometry: [2], [4], [6], [7], [27]. Very
interesting and useful for applications in physics and biology, there are some
generalizations of Finsler spaces, namely Lagrange and generalized Lagrange
spaces, and, more recently, higher-order Finsler and higher-order Lagrange
spaces, [28], [29].

In this paper we are concerning with the following;:

Question. Decide when a mapping between two Finslerian spaces T : (M, i) —
(M, L) defines a fibre bundle, i.e., for every p € M there exists a neighborhood
p € U such that 7= Y(U) is diffeomorphic to U x m='(p). In this case M, m, M
will be called Finslerian fibre bundle.
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Such a map 7 was called by us a fibre bundle map in the title of this paper,
while some authors use the word fibration, e.g. [31, p. 136]. A recent survey in
this old problem of determining when a submersion is a fibration or a locally
trivial fibre bundle is [26].

The motivation of such a result comes from physics oriented theories. Firstly,
the notion of Finsler fundamental function has a variational, more precisely
Lagrangian, origin, presented in the next section. Secondly, the treatment by
means of fibre bundles appears to be fruitful in order to obtain some remarkable
geometrical models for gauge theories. An example only: in Kaluza-Klein’s
attempts [20] (or its English translations [21], [22]) and [23] (or [24]), for a
unified theory, the space-time is the base space of a fibre bundle, more exactly
a principal fibre bundle, see also [19]. A main ingredient of the Kaluza-Klein
theory is a Riemannian metric and a generalization of Riemannian metrics is
provided by Finsler metrics [27]. Therefore it seems that a Finslerian Kaluza-
Klein theory can be constructed and this paper is intended as a first step in
this direction. The first one who pointed out the possibility of a Finslerian
Kaluza-Klein theory was R. G. Beil in [8] and [9] and a different approach to
this question appears in [34]. For other several applications of Finsler metrics
in physics, the cited books offer a good picture, while for a treatment of Finsler
and spray geometry in terms of fibre bundles, an excellent survey is [32].

Thirdly, the geometry of fibre bundles serves as main framework in the study
of two major problems: i) the integrability of several remarkable dynamical
systems; see, for example, [14], ii) the geometrization of control, as it appears,
for example, in [10]. Extensions of all these theories, based only on Riemannian
metrics, to a Finslerian setting will be an important achievement. Fourthly,
a well-known process in geometrical mechanics involving a submersion is the
Marsden-Weinstein-Ratiu reduction [25], and then a Finslerian version of this
important tool will be useful.

The contents of the paper is as follows. The first section gives a detailed
description of the Finsler geometry and a special stress is devoted to obtain
global characterizations for the objects of our theory, namely sprays, in order
to use the Blumenthal’s theorem which is a global result. The second section
treats our setting, i.e., Finslerian fibre bundles and a main result is contained
in Theorem 2.2. Also, local computations are performed since in physical appli-
cations the local coordinates are available. A remark is in order here: although
our Theorem 2.2 is a simple consequence of Blumenthal’s result we think that
the enounce of Theorem 2.2 is more important than an elaborated proof. Using
an argument cited above, our Theorem 2.2 can be called Finslerian reduction.

While the Blumenthal characterization is straightforward particularized for
Riemannian metrics, leading to the Hermann’s fibration theorem from the Rie-
mannian geometry, our result is not, since we need a suitable generalization of
the Riemannian submersion concept to the Finsler geometry. To the best of
our knowledge, although this question was raised more than ten years ago in
[2], a “good” answer does not appears in the literature, except [1].
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The last section is dedicated to a study of completeness of Euler-Lagrange
vector fields, particularly Finslerian sprays, a condition imposed by the Blu-
menthal’s result. Two sufficient conditions for the completeness of a Finslerian
spray are presented: firstly in terms of its associate energy and secondly using
the Finslerian fundamental function. It is important to note that this sec-
ond condition involves a proper Finslerian function F. It is a remarkable fact
that our framework, namely a regular Lagrangian with proper energy, connects
with the famous Poincaré Recurrence Theorem, [12, p. 87]. A discussion of the
Randers metrics ends the paper.

1. Finsler geometry revisited

Let M be a smooth, finite-dimensional manifold with TM and T*M the
tangent and cotangent bundle respectively. If L : TM — R is a smooth func-
tion, usually called Lagrangian, let F'L : TM — T*M be the fiber derivative of
L [25, p. 26]:

(1.1) FL((v) -w= dilg le=o L (v + ew)

for v,w € T,M,p € M. If Q denotes the canonical symplectic structure of
T*M let Qp = (FL)" Q be the pullback on TM. Let us denote by C°°(M) the
ring of smooth real functions on M and X (M) the C°°(M)-module of vector
fields on M.

Definition 1.1 ([25]). (i) The Lagrangian L is called regular if Q1 is a sym-
plectic structure on T'M.

(ii) The energy of L is E(L) : TM — R given by:
(1.2) E(L)(v)=FL(v)-v— L.

Sometimes the energy appears under the name of Hamiltonian but in our
framework being a function on the tangent bundle not on the cotangent bundle
we prefer this name. If L is a regular Lagrangian by using the nondegeneracy
of the symplectic form Qp of TM it result that there exists a unique vector
field Sp, € X (T'M) such that:

(1.3) is, Q2 = —dE(L),

where iz denotes the interior product with respect to the vector field Z. Sy, is
called the Euler-Lagrange vector field of L since (1.3) is the global expression
of the well-known Fuler-Lagrange equations of L.

Definition 1.2 ([27]). (i) A vector field S € X (T'M) is called a semispray or
a second order differential equation if:

(1.4) TTo0S =17,

where T't is the differential of the tangent bundle projection 7 : T'M — M and
17y is the identity of TM.
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(ii) A semispray S € X (T'M) is called a spray if it is positive-homogeneous
of order 2 with respect to velocity:

(1.5) S (av) = a®pg . (S (v)),

wherea € Ry, uy : TM — TM,t € R is the fibre multiplication (i.e., homotety)
by t, and v € TM.

Remarks 1.3. (i) The fibre multiplication is the flow of the Euler (or Liouville)
vector field T’ = ¢/* 3?1"' € X(TM) and so, a well-known definition of semisprays
in terms of I' and J=the almost tangent structure of TM, it follows: J(S) =T.

(ii) In [13] the following characterization of sprays is given: [vg,I'|pny = 0
where vg is the vertical projector associated to the semispray S, vg = %(1X(TM)
—[J,S|rN), and [,]pn is the Frolicher-Nijenhuis bracket between a vector 1-
form, i.e., a tensor field of (1,1)-type, and a vector field.

The first important result is:

Proposition 1.4 ([25], [27]). If L is a regular Lagrangian, then the associated
Euler-Lagrange vector field St is a semispray.

In order to obtain exactly a spray we need:

Definition 1.5 ([27]). A regular Lagrangian L is called Finslerian if:
(i) the following 2-homogeneous condition holds:

(1.6) Lo g = a’L

(ii) L is smooth on ToM and continuous on T'M \ ToM, where Ty M is the
subset of nonvanishing tangent vectors.

It results from (1.6) that the energy £(L) is 2-homogeneous and applying
(1.3) one obtain the main result of this section:

Proposition 1.6 ([27]). If L is Finslerian, then Si is a spray.

Example 1.7. If g = (g;; (x)) is a Riemannian metric on M, then the kinetic
energy of g:

1 o
(1.7) L= K(g) = §gijy1y]

is a Finslerian Lagrangian function and Sy, is the usual geodesic spray which
has as projections of integral curves exactly the geodesics of g.

For non-Riemannian examples of Finsler functions, namely Randers, Krop-
ina, Matsumoto and others, the reader is invited to browse the bibliography.
2. Finslerian fibre bundles

In order to give an answer to the question of Introduction we will use the
following fibration theorem due to Robert A. Blumenthal in [11]:
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Theorem 2.1. Let (M, S) and (M, S) be two connected manifolds with sprays
and let m : M — M be a submersion. Let E C TM be the kernel of Tm and
suppose that there exists Q C TM a complementary subbundle of TM (i.e.,
TM = E & Q) such that:

(i) Q is a union of integral curves of S (in the words of cited paper Q is
totally geodesic),

(ii) S |q is Tw-related to S.

If S |g is complete, then m is onto, 7 is a locally trivial fibre bundle and S
is complete.

Remark. Usually, E from above is called the vertical bundle of m and is de-
noted V(m) while @ is called a nonlinear connection in [27]. If M and M are
paracompact manifolds then a nonlinear connection exists.

Therefore we are able to give one of the main results of this paper:

Theorem 2.2 (Finslerian Reduction). Let (M, L) and (M, L) be two connected
Finsler manifolds and let m : M — M be a submersion. Suppose that there
exists Q C TM a nonlinear connection on m with (i) and (i) from the previous
theorem. If S; |q is complete then 7 is onto, m is a locally trivial fibre bundle
and Sp, is complete.

In the case of Riemannian spaces the Blumenthal theorem reduces to the
well-known Robert Hermann result about Riemannian fibrations:

Theorem 2.3 ([18], [31, p. 136]). Let (M,§) and (M,g) be two connected
Riemannian manifolds and let m : M — M be a Riemannian submersion. If
(M,q) is complete then 7 is a fibre bundle and (M, g) is complete.

The Hermann’s result leads to the following:

Question. Which is the natural generalization to Finsler geometry of the
notion of Riemannian submersion?

This question appears in the list of open problems of [2] and a partial answer
is included in [1].

In the following let us express the Finslerian Reduction in local coordinates.
Let M be an m-dimensional manifold with = = (xl)l <i<m & local chart and

let (z,y) = (mi,yi) be the adapted chart on TM. A semispray S has the
expression [27]:

9 .

2.1 S=y'— - 5" .

(2.) o — 5 00)
and S is spray if and only if S° (x, \y) = A*S* (z,y) for every i.

Let 7 : M — M be a submersion between an (m + n)-dimensional man-

ifold and an m-dimensional manifold. Then w : (:vi,;%“) — (mz) and Tm :

(z',2%y", %) — (2", y") where 1 <i<mand 1 <a < n. If S is a semispray
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on M given by (2.1) and S is a semispray on M, then the condition (ii) from
Theorem 2.1 means:

~ .0 0 . 0 ~y O
2.2 S=y'— +73° -S'— -5 .
22) Vor TV "oy 7 oge
The kernel of T is £ = span ( 0 ) and let (%) be a basis on the nonlinear

oz x?
connection ) which satisfies the Theorem 2.1. From T'7 ( 6;;) = %

b 0 . 0

sxt Oz ' oie

that is Q = (mi, 90, —nyi) CTM = (xi,i“,yi, g]a). The condition (i) from
the Theorem 2.1 implies the following form of the Theorem 2.2:

Theorem 2.4. Let (M,L) and (M, L) be connected Finsler manifolds and
7 M — M be a submersion. Suppose that there exists a nonlinear connection

Q on 7 such that in each pair of adapted charts (z') on M and (z',3*) on M
we have:
(i) Q is spanned by 52 = 2, — B0

5zt 0z’ i 9za’

(ii) the canonical sprays are given by (2.1) and (2.2) with:

(2.4) S (x (t), 7 (t)) :% { a (w(t)7j(t)’czlj:f(t)7(£(t)> dg] |

it results:

(2.3)

where x(t) is a curve on M and (z(t),Z(t)) is a curve on M.
If S; |q is complete, then m is onto, T is locally trivial fibre bundle and St
18 complete.

Let us remark that from (2.4) the 2-homogeneity of the spray S is provided
by the 2-homogeneity of the coefficients (B¢) of the nonlinear connection Q:

(2.5) Bf (z,A\%,y,\y) = N’ B (2,,y,7) -
3. Completeness of Euler-Lagrange vector fields

Since a condition in the Theorem 2.2 is regarding to complete sprays this last
section is devoted to a study of completeness of Euler-Lagrange vector fields.

Recall that X € X(M) is complete if for every xo € M the maximal interval
of existence (t_,ty) for the solution of the flow equation of X with initial
condition z(0) = xg is given by t3 = f+oo. A sufficient condition which assures
this property is provided by [16] (see also [15] and [35]):

Theorem 3.1. Let X € X(M). If there exists E, f € C*°(M) with f proper,
that is f~'(compact) = compact, and a, 3 € R such that for each x € M we
have:

(3.1) |X(E)(z)| < ol E(x)]

(3.2) |f (@) < BIE(z)],
then X is complete.
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This has the following important consequence:

Corollary 3.2. Let S;, be a Euler-Lagrange vector field. If the energy E(L)
associated to L is proper, then Sy, is complete.

Proof. Let us take in the previous theorem E = f = £(L). Since Si(E(L)) =0
it follows that all conditions are satisfied with « =0 and g = 1. O

In this proof we have used the conservation of energy £(L) along the flow
of Sr, a result which holds for every Euler-Lagrange vector field corresponding
to an autonomous, i.e., independent of time, Lagrangian [27]:

Proposition 3.3. If L = L(x,y) is a time-independent Lagrangian, then its
energy E(L) is a first integral of the Euler-Lagrange vector field Sy,.

Example 3.4. If L is a natural Lagrangian, i.e., the difference:
(3.3) L=K(g) -V,

with V' =V (x) a potential, namely a smooth function on M, then, according to
[15], the Euler-Lagrange vector field Sy, is complete if the Riemannian metric
g is complete and the potential V' is bounded below.

Turning to a Finslerian Lagrangian L let us remark that the 2-homogeneity
of £(L) combined with Euler characterization of homogeneous functions im-
plies:

(3.4) E(L)=1L
which together with the Corollary 3.2 yields:

Corollary 3.5. Let Sy, be a Finslerian spray. If the Finslerian Lagrangian L
is proper, then Sy, is complete.

Let us recall that the starting point of a Finsler geometry is not the above
used Finslerian Lagrangian L but a function F : TM — R such that L = F?
is a Finslerian Lagrangian. F is called the Finslerian fundamental function.

If F is proper it results that F? is a proper function too and hence:

Corollary 3.6. Let Sy, be a Finslerian spray associated to the Finslerian fun-
damental function F through L = F2. If F is a proper function, then Sy is
complete.

Remark 3.7. 1) In fact, the Corollary 3.2, which is the base of the previous re-
sult, is the first part of remarkable Poincaré Recurrence Theorem, as it appears
in [12, p. 87]. A concrete example of a regular Lagrangian with proper energy
appears in the same book at page 91 and describes the sliding particle.

ii) In the Finslerian setting a result of Hopf-Rinow type holds in order to
characterize topologically the geodesic completeness, [7, p. 168] and Part I of
Chapter IIT from [30].

iii) An important study of completeness in the Finsler geometry appears in
[33].



558 MIRCEA CRASMAREANU

Let us point out that there exist two other classes of spray-generating La-
grangians L. First is of the form ([5]) L = ¢(F?) with F a Finslerian fun-
damental function, but L yields the same Finslerian spray Sp as F after the
Corollary 2.2 of the cited paper and so we don’t have a new situation. The sec-
ond appears in [3] and contains Lagrangians positively homogeneous of order
m > 2. For this type of Lagrangians it results £(L) = (m — 1)L and we apply
the Corollary 3.5.

In order to end with a concrete example let us discuss the case of Randers
spaces: a Finslerian fundamental function F' is called Randers if it has the form

([7, p. 17]):

(3.5) F = \Jag(@)y'yi + bila)y',

where a = (a;;) is a Riemannian metric on M and b = (b;) is a 1-form on M
with norm with respect to a less than 1. In [17] it is proved that if b is a closed
form then the geodesics of the Finsler-Randers space are exactly the geodesics
of Riemannian space (M, a) as point sets. Unfortunately, no information about
their parametrization is available to us and so, even if we provide a complete
Riemannian metric a it is possible to obtain a non-complete Randers metric!
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