• Title/Summary/Keyword: Lactobacillus plantarum A

Search Result 590, Processing Time 0.034 seconds

Studies on Preparation of Lactic Acid Fermented Beverages from a Malt Syrup (맥아 당화액을 이용한 유산균음료의 제조에 관한 연구)

  • Yu, Tae-Jong;Rhi, Ju-Weon
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 1982
  • The possibility of developing new kinds of lactic acid beverage from a malt syrup was studied. The optimum sugar concentration of malt syrup for the cultivation of lactic acid bacteria was $10^{\circ}Bx$. The acidity of the fermented malt syrup was improved by the supplement of yeast extract(0.5%) or sodium citrate(0.08%). Though the activity of Lactobacillus lactis in malt syrup was superior to other strains, sensory test indicated that the mixed culture of Lactobacillus lactis and Streptococcus diacetilactis was better because of masking malt flavour. The changes in acidity and viable cells of malt syrup during the lactic fermentation were not so good as skim milk medium, but malt syrup medium containing milk(50 : 50) was nearly similar to skim milk medium. In the sensory scores among samples, no significant differences(P<0.05) were noted between fermented milk and fermented malt syrup containing milk, but fermented malt syrup showed a poor quality. However fermented malt syrup was not inferior to marketing lactic fermented fruit juices with regards to the lactic acid fermented beverage type.

  • PDF

Influence of microbial additive on microbial populations, ensiling characteristics, and spoilage loss of delayed sealing silage of Napier grass

  • Cai, Yimin;Du, Zhumei;Yamasaki, Seishi;Nguluve, Damiao;Tinga, Benedito;Macome, Felicidade;Oya, Tetsuji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1103-1112
    • /
    • 2020
  • Objective: To measure whether a microbial additive could effectively improve the fermentation quality of delayed-sealing (DS) silage, we studied the effects of inoculants of lactic acid bacteria (LAB) and cellulase enzyme on microbial populations, ensiling characteristics, and spoilage loss of DS silage of Napier grass in Africa. Methods: Quick-sealing (QS) and DS silages were prepared with and without LAB (Lactobacillus plantarum) inoculant, cellulase enzymes, and their combination. The QS material was directly chopped and packed into a bunker silo. The DS material was packed into the silo with a delay of 24 h from harvest. Results: In the QS silage, LAB was dominant in the microbial population and produced large amounts of lactic acid. When the silage was treated with LAB and cellulase, the fermentation quality was improved. In the DS silage, aerobic bacteria and yeasts were the dominant microbes and all the silages were of poor quality. The yeast and mold counts in the DS silage were high, and they increased rapidly during aerobic exposure. As a result, the DS silages spoiled faster than the QS silages upon aerobic exposure. Conclusion: DS results in poor silage fermentation and aerobic deterioration. The microbial additive improved QS silage fermentation but was not effective for DS silage.

Effects of Dietary Supplementation of a Citrus By-product on Growth Performance, Innate Immunity and Tolerance of Low Water Temperature in Red Seabream Pagrus major (사료 내 감귤착즙박 첨가가 저수온에서 사육된 참돔(Pagrus major)의 성장, 비특이적 면역반응 및 수온자극 스트레스에 미치는 영향)

  • Song, Jin-Woo;Park, Sang-Hyeon;Lee, Cho-Rong;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • Our aim was to determine the effects of a citrus by-product (CBP) and CBP fermented by Lactobacillus plantarum (LP-CBP), provided as dietary supplements, on the growth performance, feed utilization, innate immunity and temperature tolerance of red seabream. A diet without inclusion of CBP or LP-CBP was used as a control and four other experimental diets were formulated to replace wheat flour by 4% and 8% of either CBP or LP-CBP (designated as Con, LP-CBP4%, LP-CBP8%, CBP4% and CBP8%, respectively). Experimental diets were fed to triplicate groups of 25 fish (initial body weight, 55.0 g) for 9 weeks. Growth performance and feed utilization were not significantly different among all the groups. Bone collagen content was significantly increased by supplementation with CBP and LP-CBP. Vitamin C concentration tended to be higher in livers of fish fed the supplements than in the control group. Myeloperoxidase, lysozyme and superoxide dismutase activities were higher in fish fed CBP or LP-CBP than in fish fed the control diet. When fish were exposed to low water temperature, cumulative mortalities of those fed CBP or LP-CBP supplemented diets were lower (29%, 33%, 34% and 33% mortalities for LP-CBP4%, LP-CBP8%, CBP4% and CBP8%, respectively) than in the control group (58%). Therefore, inclusion of either CBP or LP-CBP at up to 8% in red seabream diet brings benefits through enhanced innate immunity and better tolerance of low water temperature.

Effects of Homolactic Bacterial Inoculant Alone or Combined with an Anionic Surfactant on Fermentation, Aerobic Stability and In situ Ruminal Degradability of Barley Silage

  • Baah, J.;Addah, W.;Okine, E.K.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.369-378
    • /
    • 2011
  • The effect of a homolactic inoculant containing a blend of Lactobacillus plantarum, Pediococcus acidilactici and Enterococcus faecium or, the anionic surfactant, sodium dodecyl sulphate (SDS), alone or in combination on fermentation characteristics, aerobic stability and in situ DM, OM and NDF degradability of barley silage was investigated. Barley (Hordeum vulgare, L.) was harvested (45% DM), chopped and treated with water at 24 ml/kg forage (Control), inoculant at $1.09{\times}10^5$ cfu/g forage (I), SDS at 0.125% (wt/wt) of forage (S) or with the inoculant ($1.09{\times}10^5$ cfu/g) plus SDS (0.125% wt/wt; I+S). The treated forages were ensiled in triplicate mini silos and opened for chemical and microbiological analyses on d 1, 2, 3, 7, 14, 42 and 77. Silage samples from d 77 were opened and aerobically exposed for 7 d. The in situ rumen degradability characteristics of silage DM, OM and NDF were also determined. The terminal concentration of NDF in S and I+S was lower (p<0.001) than in other treatments. Lactate concentration was higher (p<0.001) and the rate and extent of pH decline were greater (p<0.001) in I and I+S than S and Control silages. A homolactic pathway of fermentation in I and I+S was evidenced by reduced (p<0.001) water-soluble carbohydrates concentration, higher lactate (p<0.01), lower acetate (p<0.01) and lower pH values (p<0.001) than in S and Control silages. All silages remained stable over 7 d of exposure to air as indicated by lower temperatures and moulds, and by non-detectable yeast populations. The treated silages had lower DM and OM degradability than in the Control but NDF degradation characteristics of I+S were improved compared to other treatments. It is concluded that the inoculant alone improved the fermentation characteristics whereas the combination of the inoculant with SDS improved both fermentation and NDF degradability of barley silage.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).

Effect of Unfermented and Fermented Atractylodes macrocephalae on Gut Permeability and Lipopolysaccharide-Induced Inflammation (백출 및 발효백출의 장점막 투과성 개선 효과 및 항염증효과)

  • Han, Kyungsun;Kim, Kicheol;Wang, Jinghua;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.13 no.1
    • /
    • pp.24-32
    • /
    • 2013
  • Objectives: The aim of this study is to investigate anti-imflammatory and protective effect for intestinal epithelial cells with Atractylodes macrocephae (AM), a traditional Korean Herbal medicine and fermented Atractylodes macrocephae (FAM) with Lactobacillus plantarum. Methods: HCT-116 and Raw 264.7 cells were used in this study. Using NO assay, we measured lipopolysaccharide (LPS)-induced anti-inflammatory effect. We measured permeability of intestinal epithelial cells with transepithelial electrical resistance and horseradish peroxide flux assay. Water soluble tetrazolium salt assay was used to see cell proliferation. All the results were presented in mean and standard deviation. We used Student's t-test for analyzing significance of results. Results: In Raw 264.7 cells NO production decreased 22.4% with pre-treatment of AM and FAM, especially with FAM in high concentration. In HCT-116 cells LPS-induced intestinal permeability had a protective effect with both AM and FAM, which was also tend to be proportional to the concentration. Cell viability increased up to 135.52% after treatment of high concentration of FAM in HCT-116, while there was no significant change in Raw 264.7 cells with herb treatments. Conclusions: These results show evidence that AM, especially fermented ones, significantly reduced intestinal membrane permeability. They also had a protective effect as well as an anti-inflammation effect for HCT-116 and Raw 264.7 cells. This suggest that FAM may be a therapeutic agent for Leaky gut syndrome by reducing intestinal permeability.

Effects of Heat Treatment, Sugar Addition and Fermentation on Cytotoxicity of Korean Mistletoe (가열처리, 당의 첨가 및 발효에 의한 한국산 겨우살이의 세포독성변화)

  • Park, Jong-Heum;Hyun, Chang-Kee;Shin, Heuyn-Kil;Yeo, Ick-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.362-368
    • /
    • 1997
  • As a preliminary study for the development of cancer-preventing functional food using Korean mistletoe, the cytotoxic effects of Korean mistletoe on between non-tumorigenic A3l cell and tumorigenic MSV cell derived from mouse 3T3 fibroblast cell line were investigated. While the raw extract, of which $ID_{50}$, value was $3.94\;{\mu}g/mL$, showed strong cytotoxic effect, its heat-treated extract was not cytotoxic up to $30\;{\mu}g/mL$. On the other hand, the heat-treated extract with law concentration showed an accelerative effect on the proliferation of non-tumorigenic A3l cell and an inhibitory effect on that of tumorigenic MSV cell. In addition, the influences of the addition of carbohydrates, such as galactose, lactose, glucose, mannose, fructose, sucrose and starch, to mistletoe extract were studied. There were not any significant changes with raw extract plus carbohydrate treatment, but the accelerative and inhibitory effects of heat-treated extract on each A3l and MSV cell were increased further by the treatment with sugars such as lactose, galactose, glucose, fructose. In order to investigate the changes of cytotoxicity of fermented Korean mistletoe according to fermentation periods, the raw and heat-treated extract were inoculated with Lactobacillus plantarum. During 1, 3, 5 and 7 fermentation days, the fermented raw mistletoe extract showed gradual accelerative effect on A31 cell proliferation without any changes of cytotoxicity on MSV cell. In case of the fermented heat-treated extract, however, the accelerative effect of heat-treated extract on A31 cell proliferation in early stage was disappeared during the fermentation.

  • PDF

Effect of Lactic Acid Bacteria Treatment on Nutritive Value and In Vitro Ruminal Fermentation of Italian Ryegrass (Lolium multiflorum L.) Silage

  • Lee, Kihwan;Marbun, Tabita Dameria;Kim, Suyeon;Song, Jaeyong;Kwon, Chan Ho;Yoon, Duhak;Kang, Jungsun;Lee, Chanho;Cho, Sangbuem;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.182-189
    • /
    • 2020
  • This study was conducted to evaluate the effect of lactic acid bacteria (LAB) inoculation to domestically-cultivated Italian ryegrass (IRG) on silage fermentation and in vitro ruminal fermentation. There were six treatments based on the LAB inoculants: 1) no addition of LAB (negative control: NC), additions of 2) commercially-available LAB (positive control: PC), 3) Lactobacillus plantarum (LPL), 4) L. paracasei (LPA), 5) L. acidophilus (LA), and 6) L. pentosus (LPT). All treatments were inoculated at a concentration of 106 CFU/g and ensiled for 3, 7, 21, and 42 days in triplicate and analyzed for nutritive values when ensiling was terminated. Day 42 silage from all treatments were also examined for in vitro ruminal fermentation. After 42 days, LAB-inoculated silages had higher (P<0.05) lactic acid concentration compared to the NC. In terms of nutritive values, the silages treated with LPA, LA, and LPT showed higher (P<0.05) crude protein and lower (P<0.05) neutral detergent fiber and acid detergent fiber content compared to the rest of the treatment. In vitro ruminal dry matter degradability was not affected by LAB addition. However, LAB-treated IRG had shown higher (P<0.05) ammonia-N compared with that of the NC. LPA had shown the highest (P<0.05) volatile fatty acid concentration among the LAB examined. In conclusion, the addition of a single strain of LAB appeared to produce a quality IRG silage compared with the NC and the PC. Among the strains examined, LPA seemed to be superior to the others.

Short-term Supplementation with a Trace Mineral-fortified Microbial Culture May Increase Trace Minerals in Longissimus dorsi Muscle and Prevent Incidence of Urolithiasis in Finishing Hanwoo Steers

  • Kim, Young Il;Ahmadi, Farhad;Lee, Sang Moo;Lee, Youn Hee;Choi, Do Young;Kwak, Wan Sup
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.191-198
    • /
    • 2016
  • This study evaluated the effects of TMC (trace mineral-fortified microbial culture) supplementation on growth performance, carcass characteristics, and meat quality parameters of Hanwoo steers during the last 4 months of finishing period. The TMC was a combination of 0.4% trace minerals, 20.0% Na-bentonite, and 79.6% feedstuffs, which was inoculated with a mixed microbial culture (Enterobacter ludwigii, Bacillus cereus, B. subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae). Twenty-four steers were blocked by initial BW ($634{\pm}16kg$) and randomly allocated to one of two treatments (control vs. 3.3% TMC). The effect of TMC supplementation on the growth performance was not significant. There was no incidence of urolithiasis in TMC-fed steers. However 3 out 12 steers (25%) fed the control diet were observed to have urinary calculi. The carcass yield and meat quality parameters were not affected by TMC supplementation, however marbling score was increased in TMC-fed steers (P = 0.08). There was no effect of TMC treatment on the chemical composition of longissimus dorsi muscle (LM). The TMC supplementation increased concentrations of manganese (P < 0.01), cobalt (P = 0.02), iron, and copper (P = 0.06) in LM. In conclusion, TMC treatment did not negatively affect growth performance and meat quality parameters, and positively affected the trace minerals profile of LM.

Inhibition of Metarhizium anisopliae infection of Protaetia brevitarsis seluensis larvae using several effective microorganisms

  • Kwak, Kyu-Won;Kwon, Soon Woo;Nam, Sung-Hee;Park, Kwan-Ho;Kim, Eun-Sun;Lee, Hee-Sam;Choi, Ji-Young;Han, Myung-Sae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The purpose of this study was to determine the best method for minimizing the occurrence of Metarhizium anisopliae infection of Protaetia brevitarsis seluensis during mass breeding on agricultural farms. There is a high demand for the use of P. b. seluensis larvae in animal feed and as food for humans. However, mass breeding results in the entomopathogenic fungal (usually M. anisopliae) infection of P. b. seluensis. A mixture of microorganisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) delayed fungal infection by M. anisopliae, which infected fewer P. b. seluensis when the microorganism mixture was added to sawdust as feed for P. b. seluensis. When sawdust with the effective microorganisms (EM) was given to P. b. seluensis for 30 d, their mortality rate was approximately 35 % less than that of the control group, which was fed sawdust without the EM. In addition, the growth of M. anisopliae on agar media spread with each bacterium as inhibited by up to 80 % more than those spread with 4 % sodium hypochlorite, which is a harmless fungal inhibitor generally used in agricultural farms for disinfection.