• Title/Summary/Keyword: Lactobacillus plantarum A

Search Result 590, Processing Time 0.026 seconds

Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs

  • Da Yoon, Yu;Sang-Hyon, Oh;In Sung, Kim;Gwang Il, Kim;Jeong A, Kim;Yang Soo, Moon;Jae Cheol, Jang;Sang Suk, Lee;Jong Hyun, Jung;Jun, Park;Kwang Keun, Cho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1184-1198
    • /
    • 2022
  • In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.

The Inhibitory Effect of L. plantarum Q180 on Adipocyte Differentiation in 3T3-L1 and Reduction of Adipocyte Size in Mice Fed High-fat Diet

  • Park, Sun-Young;Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.99-109
    • /
    • 2018
  • In this study, we examined the inhibitory effect of L. plantarum Q180 on adipocyte differentiation in 3T3-L1 and reduction of adipocyte size in mice fed high-fat diet. L. plantarum Q180 inhibited the adipocyte differentiation of 3T3-L1 cells ($18.47{\pm}0.32%$) at a concentration of $400{\mu}g/mL$ ($10^8CFU/g$). As a result of western blot analysis, the expression of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in 3T3-L1 adipocyte treated with $400{\mu}g/mL$ of L. plantarum Q180 decreased 35.16% and 40.07%, respectively, compared with the control. To examine the effects, mice were fed three different diets as follows: ND (n=6) was fed ND and orally administered saline solution; HFD (n=6), HFD and orally administered saline solution; and HFD+Q180 (n=6), HFD and orally administered L. plantarum Q180. After six weeks, the rate of increase of body weight was 13.7% lower in the HFD+Q180 group compared to the HFD group. In addition, the epididymal fat weights of the HFD+Q180 group were lower than that of the HFD group. The change of adipocyte size was measured in diet-induced obese mice. Consequently, the number of large-size adipose tissue was less distributed in the ND and HFD+Q180 groups than in the HFD group. L. plantarum Q180 has an effect on the inhibition of 3T3-L1 adipocyte differentiation, fat absorption and reduction of adipocyte size. L. plantarum Q180 could be applied to functional food products that help improve obesity.

Production of highly enriched GABA through Lactobacillus plantarum fermentation of katsuobushi protein hydrolyzate made from Dendropanax morbiferus extract fermented by Bacillus subtilis (황칠나무 추출물의 고초균 발효물로 제조된 가쓰오부시 단백가수분해물의 Lactobacillus plantarum 발효를 통한 고농도 GABA 생산)

  • Yu-Jeong An;Nak-Ju Sung;Sam-Pin Lee
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2023
  • To develop a multi-functional ingredient, the bioconversion of katsuobushi protein was optimized using Bacillus subtilis HA and Lactobacillus plantarum KS2020. The Dendropanax morbiferus extract (DME) culture with protease activity (102 unit/mL) was prepared by B. subtilis with 2% glucose and 1% skim milk through one day of alkaline fermentation. Katsuobushi protein was effectively hydrolyzed by the DME culture at 60℃ for 3 hours, resulting in a tyrosine content of 156.85 mg%. Subsequently, a second lactic acid fermentation was carried out with 10% monosodium glutamate (MSG) using L. plantarum KS2020 to produce higher levels of GABA. Following co-cultivation for three days, DME exhibited a pH of 8.3 (0% acidity). After seven days, the viable cell count of L. plantarum increased to 9.33 CFU/mL, but viable Bacillus cells were not detected. Taken together, a multi-functional ingredient with enriched GABA, peptides, probiotics, and umami flavor was developed through lactic acid fermentation using hydrolyzed katsuobushi protein. These results indicate that katsuobushi protein could be used as a byproduct to produce a palatable protein hydrolysate using alkaline-fermented DME culture as a proteolytic enzyme source.

Malo-lactic Bacteria in Korean Winery Environment and Their Potential Use in Wine Making (한국내 양조 환경하의 malo-lactic 박테리아의 분포 및 그들의 양조업에의 이용성)

  • Lee, S.O.;Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.193-198
    • /
    • 1980
  • Substantial numbers of malo-lactic bacteria were detected in Korean winery environment such as in grape juices, fermenting musts, lees, aging wines, and bottled apple wines. Among 1363 malo-lactic strains isolated from the above habitats, four superior strains were selected and identified as Leuconostoc oenos strain A-25, B-30, C-13 and Lactobacillus plantarum strain D-11. The strain A-25 showed malate utilizing activity almost equivalent to Leu. oenos ML34, a well-known malo-lactic bacterium. Upon experimental vinifications the malo-lactic fermentation efficiency of A-25 was confirmed.

  • PDF

Effect of Lactic acid bacteria and Enzyme Supplementation on Fermentative Patterns of Ensiling Silages, Their In vitro Ruminal Fermentation, and Digestibility (젖산균과 효소제 처리에 의한 동계사료작물 발효성상, In vitro 반추위 발효 및 소화율에 미치는 영향 연구)

  • Lee, A-Leum;Shin, Su-Jin;Yang, Jinho;Cho, Sangbuem;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • The objective of this study was to determine the effect of bacterial inoculation (Lactobacillus plantarum or combo inoculant mixed with Lactobacillus plantarum and Lactobacillus buchneri) and addition of fibrolytic enzyme on chemical compositions and fermentation characteristics of whole crop barley (WCB) and triticale (TRT) silage, their ruminal in vitro fermentation, and digestibility. In TRT silage, enzyme addition significantly (p<0.01) decreased NDF content compared to no enzyme addition treatment. Organic acids such as lactate and acetate contents in WCB and TRT silages were significantly (p<0.01) higher compared to those in the control. Particularly, lactate content was the highest in L. plantarum treatment. Fibrolytic enzyme treatment on both silages had relatively higher lactic acid bacteria content, while mold content was lower in both treatments compared to that in the control. In vitro dry matter digestibility was generally improved in WCB silages. It was higher (p<0.01) in TRT with mixed treatment of L. plantarum, L. buchneri, and enzyme compared to others. In vitro ruminal acetate production was relatively higher in treatments with both enzyme and inoculant additions compared to that in the control. Therefore, the quality of silage and rumen fermentation could be improved by inoculants (L. plantarum and L. buchneri) regardless whether whole crop barley (WCB) or triticale (TRT) silage was used. Although it was found that fibrolytic enzyme addition to both silages had various quality and rumen fermentation values, further study is needed.

Inhibition of Lactic Acid Bacteria in Kimchi Fermentation by Nisin

  • CHOI, MIN HO;YUN HEE PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.547-551
    • /
    • 1998
  • Sixty isolates of lactic acid bacteria found in kimchi, a traditional Korean dish of fermented vegetables, were tested for nisin sensitivity. Of the sixty isolates, all belonging to the genera Leuconostoc, Lactobacillus, and Pediococcus, fifty isolates were sensitive to nisin at a concentration of 100 IU/$m\ell$, and four isolates appeared to be resistant to nisin. This demonstrated that the nisin sensitivity of lactic acid bacteria found in kimchi varied considerably among isolates. In MRS broth containing nisin at concentrations of 100 to 300 IV/$m\ell$, the growth of sensitive isolates of Leuconostoc mesenteroides and Lactobacillus plantarum was inhibited for two to three days at 2$0^{\circ}C$. When nisin was added to kimchi preparations at a concentration of 100 IU/$m\ell$, the growth of lactic acid bacteria was delayed and reached a maximum two days later than that in kimchi without nisin. These results suggest the possible use of nisin in kimchi preparation, at recommended levels, to control the lactic acid fermentation. Scanning electron micrographs of a sensitive isolate L. plantarum revealed the formation of pores on cell surfaces followed by rapid cell wall destruction 1 h after the addition of nisin.

  • PDF

Effects of Starter Cultures on Physicochemical Properties of Fermented Sausages

  • Yim, Dong-Gyun;Chung, Yi-Hyung;Nam, Ki-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1105-1112
    • /
    • 2017
  • Fermented sausages prepared by inoculation with different starter cultures were analyzed for their physicochemical characteristics. Three types of fermented sausages were processed separately, without starter culture (control), with a commercial culture mix, and culture mix plus Lactobacillus plantarum (LP). On proximate analysis, two inoculated sausages showed an increase in moisture and fat contents (p<0.05). The inoculated sausages showed lower hardness and gumminess values (p<0.05) than control. The combination of starter culture with LP displayed the lowest chewiness and cohesiveness values and showed a more intensive red color (p<0.05). Two inoculated batches showed significantly lower pH values and water activity than control, in accordance with the increase in lactic acid bacteria (p<0.05). The inoculated sausages reduced the extent of lipid oxidation (p<0.05) and induced an increase in lauric acid, linoleic acid, eicosadienoic acid, and arachidonic acid, as well as they had a higher polyunsaturated fatty acid content and ratio of n-6 and n-3 fatty acids (p<0.05). The addition of LP to the starter culture in a suitable combination resulted in a positive effect on the physicochemical and microbiological attributes of fermented sausages.

Antimicrobial Peptides from Lactobacillus plantarum UTNGt2 Prevent Harmful Bacteria Growth on Fresh Tomatoes

  • Tenea, Gabriela N.;Pozo, Tatiana Delgado
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1553-1560
    • /
    • 2019
  • In a previous study, the antimicrobial peptides extracted from Lactobacillus plantarum UTNGt2 of wild-type fruits of Theobroma grandiflorum (Amazon) were characterized. This study aimed to investigate the antimicrobial mechanisms of peptides in vitro and its protective effect on fresh tomatoes. The addition of partially purified Gt2 peptides to the E. coli suspension cells at the exponential ($OD_{605}=0.7$) growth phase resulted in a decrease with 1.67 (log10) order of magnitude compared to the control without peptide. A marginal event (< 1 log10 difference) was recorded against Salmonella, while no effect was observed when combined with EDTA, suggesting that the presence of a chelating agent interfered with the antimicrobial activity. The Gt2 peptides disrupted the membrane of E. coli, causing the release of ${\beta}$-galactosidase and leakage of DNA/RNA molecules followed by cell death, revealing a bacteriolytic mode of action. The tomatoes fruits coated with Gt2 peptides showed growth inhibition of the artificially inoculated Salmonella cocktail, demonstrating their preservative potential.

Clinical Evidence of Effects of Lactobacillus plantarum HY7714 on Skin Aging: A Randomized, Double Blind, Placebo-Controlled Study

  • Lee, Dong Eun;Huh, Chul-Sung;Ra, Jehyeon;Choi, Il-Dong;Jeong, Ji-Woong;Kim, Sung-Hwan;Ryu, Ja Hyun;Seo, Young Kyoung;Koh, Jae Sook;Lee, Jung-Hee;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2160-2168
    • /
    • 2015
  • The beneficial effects of probiotics are now widely reported, although there are only a few studies on their anti-aging effects. We have found that Lactobacillus plantarum HY7714 (HY7714) improves skin hydration and has anti-photoaging effects, and in the present study, we have further evaluated the anti-aging effect of HY7714 via a randomized, double blind, placebo-controlled clinical trial. The trial included 110 volunteers aged 41 and 59 years who have dry skin and wrinkles. Participants took 1 × 1010 CFU/day of HY7714 (probiotic group) or a placebo (placebo group) for 12 weeks. Skin hydration, wrinkles, skin gloss, and skin elasticity were measured every 4 weeks during the study period. There were significant increases in the skin water content in the face (p < 0.01) and hands (p < 0.05) at week 12 in the probiotic group. Transepidermal water loss decreased significantly in both groups at weeks 4, 8, and 12 (p < 0.001 compared with baseline), and was suppressed to a greater extent in the face and forearm in the probiotic group at week 12. Volunteers in the probiotic group had a significant reduction in wrinkle depth at week 12, and skin gloss was also significantly improved by week 12. Finally, skin elasticity in the probiotic group improved by 13.17% (p < 0.05 vs. controls) after 4 weeks and by 21.73% (p < 0.01 vs. controls) after 12 weeks. These findings are preliminary confirmation of the anti-aging benefit to the skin of L. plantarum HY7714 as a nutricosmetic agent.