• Title/Summary/Keyword: Lactobacillus mucosae

Search Result 6, Processing Time 0.025 seconds

Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets

  • Chiang, Ming-Lun;Chen, Hsi-Chia;Chen, Kun-Nan;Lin, Yu-Chun;Lin, Ya-Ting;Chen, Ming-Ju
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1163-1170
    • /
    • 2015
  • Two probiotic strains, Lactobacillus johnsonii x-1d-2 and Lactobacillus mucosae x-4w-1, originally isolated from piglet feces, have been demonstrated to possess antimicrobial activities, antibiotic resistances and interleukin-6 induction ability in RAW 267.4 macrophages in our previous study. These characteristics make L. johnsonii x-1d-2 and L. mucosae x-4w-1 good candidates for application in feed probiotics. In this study, soybeal meal, molasses and sodium acetate were selected to optimize the growth medium for cultivation of L. johnsonii x-1d-2 and L. mucosae x-4w-1. These two strains were then freeze-dried and mixed into the basal diet to feed the weaned piglets. The effects of L. johnsonii x-1d-2 and L. mucosae x-4w-1 on the growth performance and fecal microflora of weaned piglets were investigated. The results showed that the bacterial numbers of L. johnsonii x-1d-2 and L. mucosae x-4w-1 reached a maximum of 8.90 and 9.30 log CFU/mL, respectively, when growing in optimal medium consisting of 5.5% (wt/vol) soybean meal, 1.0% (wt/vol) molasses and 1.0% (wt/vol) sodium acetate. The medium cost was 96% lower than the commercial de Man, Rogosa and Sharpe medium. In a further feeding study, the weaned piglets fed basal diet supplemented with freeze-dried probiotic cultures exhibited higher (p<0.05) body weight gain, feed intake, and gain/feed ratio than weaned piglets fed basal diet. Probiotic feeding also increased the numbers of lactobacilli and decreased the numbers of E. coli in the feces of weaned piglets. This study demonstrates that L. johnsonii x-1d-2 and L. mucosae x-4w-1 have high potential to be used as feed additives in the pig industry.

Lactobacillus mucosae and Bifidobacterium longum Synergistically Alleviate Immobilization Stress-Induced Anxiety/Depression in Mice by Suppressing Gut Dysbiosis

  • Han, Sang-Kap;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1369-1374
    • /
    • 2019
  • We isolated Lactobacillus mucosae NK41 and Bifidobacterium longum NK46 from human feces, which induced BDNF expression in corticosterone-stimulated SH-SY5Y cells, and examined their anti-depressive effects in mice. NK41, NK46, and their (1:1) mixture significantly mitigated immobilization stress (IS)-induced anxiety-like/depressive behaviors, hippocampal $NF-{\kappa}B$ activation, BDNF expression, $Iba1^+$ cell population, and blood corticosterone, $TNF-{\alpha}$, IL-6, and lipopolysaccharide levels. Furthermore, they inhibited colitis marker $NF-{\kappa}B$ activation, and $TNF-{\alpha}$ expression in mice with IS-induced anxiety/depression. They additionally suppressed gut Proteobacteria and Bacteroidetes populations and bacterial lipopolysaccharide production. These findings suggest that NK41 and NK46 may alleviate anxiety/depression and colitis by suppressing gut dysbiosis.

Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1

  • Pajarillo, Edward Alain B.;Kim, Sang Hoon;Lee, Ji-Yoon;Valeriano, Valerie Diane V.;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.692-702
    • /
    • 2015
  • Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactiveTM Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

IL-10 Expression-Inducing Gut Bacteria Alleviate High-Fat Diet-Induced Obesity and Hyperlipidemia in Mice

  • Kim, Hye-In;Yun, Soo-Won;Han, Myung Joo;Jang, Se-Eun;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.599-603
    • /
    • 2020
  • In the present study, we examined the effects of interleukin (IL)-10 expression-inducing bacteria Bifidobacterium adolescentis HP1, Lactobacillus mucosae HP2, and Weissella cibaria HP3 on high-fat diet (HFD)-induced obesity and liver steatosis in mice. Oral gavage of HP1, HP2, and HP3 reduced HFD-induced bodyweight gain, triglycerides, and total cholesterol levels in the blood and liver. They also suppressed HFD-induced colitis and the fecal δ,γ-Proteobacteria population. Of the tested bacteria, HP2, which most potently inhibited IL-10 expression, also suppressed HFD-induced bodyweight gain, liver steatosis, and colitis most effectively. These findings suggest that IL-10 expression-inducing gut bacteria can suppress obesity and liver steatosis.

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.