• Title/Summary/Keyword: Lactobacillus buchneri

Search Result 34, Processing Time 0.029 seconds

Characteristics of Lactic Acid Production by Lactobacillus buchneri Isolated from Kimchi (김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성)

  • Sim, Hyun-Su;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • Lactic acid is a useful platform chemical for a wide range of food and industrial applications such as pharmaceuticals and cosmetics. Among 313 strains of lactic acid bacteria isolated from different traditional Korean fermented foods, eight Lactobacillus strains effectively utilized xylose as a carbon source to produce lactic acid. A lactic acid bacterium identified as Lactobacillus buchneri produced the highest amount of lactic acid from xylose under anaerobic conditions. The optimum xylose concentration and incubation temperature were 50 g/l and 37℃, respectively; under these conditions, 22.3 g/l lactic acid was produced.

Isolation and Characterization of Lactobacillus buchneri Strains with High ${\gamma}$-Aminobutyric Acid Producing Capacity from Naturally Aged Cheese

  • Park, Ki-Bum;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.86-90
    • /
    • 2006
  • Two lactic acid bacteria (LAB) with high ${\gamma}$-aminobutyric acid (GABA)-producing capacity were isolated from naturally aged cheese. Examination of the biochemical features using an API kit indicated that the two strains belonged to Lactobacillus. They were gram positive, rod-type bacteria, and fermented arabinose, melezitose, melibiose and xylose, but did not utilize cellobiose or trehalose. 16S rDNA sequencing analysis confirmed that they were Lactobacillus buchneri and Lactobacillus sp. They were accordingly named as Lactobacillus buchneri OPM-1 and Lactobacillus sp. OPM-2, and could produce GABA from MRS broth supplemented with 10 g/L of monosodium glutamate (MSG) at a productivity of 91.7 and 116.7 mg/L/hr, respectively. Cell extracts of L. buchneri OPM-1 and Lactobacillus sp. OPM-2 showed glutamate decarboxylase (GAD) activity, for which the optimum pH and temperature were 5.5 and $30^{\circ}C$, respectively.

Production of ${\gamma}-Aminobutyric$ Acid (GABA) by Lactobacillus buchneri Isolated from Kimchi and its Neuroprotective Effect on Neuronal Cells

  • Cho, Yu-Ran;Chang, Ji-Yoon;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • Lactic acid bacteria that accumulated ${\gamma}-aminobutyric$ acid (GABA) in culture medium were screened to identify strains with high GAB A-producing ability. One strain, MS, which was isolated from kimchi, showed the highest GABA-producing ability among the screened strains. MS was identified as Lactobacillus buchneri based on Gram-staining, metabolic characteristics, and 16S rDNA sequence determination, Optimum culture conditions for GABA production were determined: MRS broth containing 5% MSG, 1% NaCl, and 1% glucose, at an initial pH of 5.0, the incubation temperature at $30^{\circ}C$ for 36 h. Under these conditions, MS produced GABA at a concentration of 251 mM with a 94% GABA conversion rate. Moreover, culture extracts of Lb. buchneri MS partially or completely protected neuronal cells against neurotoxicantinduced cell death.

Effect of Lactobacillus buchneri 40788 and Buffered Propionic Acid on Preservation and Nutritive Value of Alfalfa and Timothy High-moisture Hay

  • Baah, J.;McAllister, T.A.;Bos, L.;Herk, F. Van;Charley, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.649-660
    • /
    • 2005
  • The effects of Lactobacillus buchneri 40788 and buffered propionic acid on preservation, intake and digestibility of alfalfa (Medicago sativa) and timothy (Phleum pratense) hay were investigated. During baling, forages were treated with L. buchneri 40788 (1.2${\times}$10$^6$ CFU/g) as a liquid (LLB) or as a granular preparation (GLB), with buffered propionic acid (10 mL/kg, BPA), or left untreated (control). Triplicate 500 kg round bales of each treatment were put up at two moisture levels for each forage: 17%${\pm}$0.33% and 20%${\pm}$0.30% for timothy and 17%${\pm}$0.20% and 19%${\pm}$0.27% for alfalfa (mean${\pm}$SD). Bales were sampled for chemical and microbiological analyses after 0, 30 and 60 d of storage. Compared to controls, all preservatives reduced (p<0.05) heating of both forages at all moisture levels with the exception of alfalfa baled at 19% moisture. After 60 d of storage, GLB reduced (p<0.05) moulds in 17% timothy hay as compared to other treatments, but at 20% moisture, moulds were reduced in LLB- and BPA-treated timothy as compared to controls. In alfalfa at 17% moisture, total bacteria were lower (p<0.05) in GLB-treated bales than LLB or control bales, but yeast and total bacteria were only reduced in BPA-treated alfalfa at 19% moisture. In situ DM disappearance of timothy (both moisture levels) and alfalfa (19% moisture level) increased (p<0.05) with LLB treatment compared to control. Digestibility of both forages did not differ (p>0.05) among treatments, however, voluntary DM intake of LLB-treated timothy (1.32 kg/d) was 22.3% higher (p<0.05) than control, and 14.1% higher than BPA-treated timothy. Treating timothy and alfalfa hay with L. buchneri 40788 or buffered propionic acid may improve the nutritive value of the hay when baled at 17 to 20% moisture.

Comparison of Treatment Effect of Domestically Distributed Major Silage Inoculant

  • Young Sang Yu;Yan Fen Li;Xaysana Panyavong;Li Zhunang Wu;Jeong Ung Hwang;Li Li Wang;Hak Jin Kim;Won Jin Lee;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.

Glycine max Merr enhances the viability and adhesion ability of Lactobacillus buchneri in gastrointestinal condition in vitro.

  • Seo, Jae-Bin;Park, Bog-Im;Myung, Hyun;Sim, Hyeon-Jae;Lee, Hoon-Yeon;Kim, Seong-Oh;Song, Kyoung-Ha;Lee, So-Jin;Cho, Jung Hee;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.127-127
    • /
    • 2018
  • Probiotics are microorganisms that have beneficial effects on the health of the host. The health promoting effect by probiotics influences suppressing harmful bacteria, prevention of constipation, blood cholesterol reduction and regulation of blood pressure. Prebiotics are used to promote the growth or activity of microorganisms. Synbiotics, which are a mixture of probiotics and prebiotics, synergize in the intestines by complementing each other. Synbiotics not only improves the viability of the probiotics while passing through the gastrointestinal tract, maintain intestinal homeostasis, but also regulate balance of harmful and useful bacterial growth. Glycine max Merr (GMM) has been widely used in Asian countries to treat cancer, obesity, oxidative stress and imbalanced immune diseases. In addition, it has been reported that dietary fiber-rich grains promote bowel movements and prevent constipation. In this study, we investigated the viability of LactobacillIus buchneri (L.buchneri) strains, known as lactic acid bacteria under conditions of gastric fluid and intestinal fluid to determine the suitability of L.buchneri as probiotics. The adhesion ability of L.buchneri to caco-2 cells was also confirmed. The present studies showed that GMM extract promoted the growth and activity of L.buchneri strains as prebiotics. Also, this results suggested that the mixture of L.buchneri and GMM extract can helps maintain intestinal health and healthy body as synbiotics and health functional food material.

  • PDF

Synbiotics (mixture of probiotics and prebiotics) ameliorates DSS-induced ulcerative colitis in vivo.

  • Jeon, Yong-Deok;AYE, AYE;Song, Young-Jae;Kang, Sa-Haeng;Soh, Ju-Ryun;Kim, Dae-Ki;Myung, Hyun;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.107-107
    • /
    • 2019
  • Ulcerative colitis (UC) is one of inflammatory bowel disease (IBD), characterized by chronic inflammatory response and dysregulation of immune function. The severity of US has been influenced by environmental factors and food habit. The immune modulatory, anti-inflammatory and steroidal medicine have been used for the treatment of UC. However, long-term administration of those medicine is accompanied with side-effect. So, it is necessary to develop the non side-effect medicine using natural product. Prebiotics influences intestinal condition and food consumption. The heredity, immunity and environmental condition are related with occurrence of UC. In recent study, UC patients had lower level of prebiotics such as Lactobacillus and Bifidobacterium compared with healthy people. Also, previous study announced that imbalance of enteric flora aggravates the severity of UC. The effectiveness of probiotics might affect colon ability and viable bacteria also could promote the proliferation of beneficial intestinal bacteria. Prebiotics, such as herbal medicine, could lead to balance of intestinal bacteria or increase beneficial bacteria. So, proper choice of herbal medicine could control the intestinal condition. This study aimed to investigate the effect of mixture of probiotics and prebiotics (synbiotics) on dextran sulfate sodium (DSS)-induced UC in vivo. The synbiotics consist of Lactobacillus buchneri, Polymnia sonchifolia and Glycine max Merr. in this study. To evaluate the effect of synbiotics, 3% DSS was administered in BALB/c mice and synbiotics was daily administered for experimental days. The administration of synbiotics regulated colon length shortening, body weight change and disease activity index effectively. Also, extract of synbiotics upregulated survival ability of Lactobacillus buchneri in gut condition. These results suggest that mixture of probiotics and prebiotics, called as synbiotics, could influence intestinal condition also regulate the colon disease. Synbiotics might be a therapeutic agent for treatment of UC.

  • PDF

Characteristics of Persimmon Juice fermented with Kimchi Lactic Acid Bacteria (김치 유산균을 이용한 감 발효음료 특성)

  • Seo, Sang Young;Ahn, Min Sil;Choi, So Ra;Song, Eun Ju;Choi, Min Kyung;Yoo, Seon Mi;Kim, Young Sun;Song, Young Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • This study was carried out to develop a fermented juice using persimmon (Diospyros kaki Thunb) and lactic acid bacteria isolated from kimchi, Lactobacillus buchneri BK-1, Pediococcus inopinatus BK-3 and Leuconostoc mesenteroides M-17. The total acidity value was 0.75% and viable cell number reached $1.9{\times}10^8CFU/mL$ when the persimmon and water solution was diluted by 1:3 (w/v) added with rice-syrup ($15^{\circ}Brix$) that was fermented by Lactobacillus buchneri BK-1 for 7 days. Additional levels of rice-syrup increased the total acidity of fermented juice, and the overall acceptability was the highest (4.1 point) for fermented persimmon juice added with rice-syrup $10^{\circ}Brix$. L. buchneri BK-1 and Pediococcus inopinatus BK-3 were selected to ferment the persimmon juice because there total acidity values were 0.83% and 0.80%, respectively, and the final cell concentrations, $5.1{\times}10^8$ and $2.7{\times}10^8CFU/mL$, were more than other treatment, respectively. The total acidity value of persimmon at day 3 of fermented broth were significantly higher than that of day 7 of fermented broth, and the number of viable cell declined from $8.2{\times}10^8$ to $4.3{\times}10^8CFU/mL$. In these results, the suitable period for fermentation was 4~5 days owing to the sourness being strong during fermentation.

Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

  • Ni, Kuikui;Wang, Yanping;Cai, Yimin;Pang, Huili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1123-1132
    • /
    • 2015
  • Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly.

A lower cost method of preparing corn stover for Irpex lacteus treatment by ensiling with lactic acid bacteria

  • Zuo, Sasa;Jiang, Di;Niu, Dongze;Zheng, Mingli;Tao, Ya;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1273-1283
    • /
    • 2020
  • Objective: This study investigated a method of preparing corn stover for Irpex lacteus (I. lacteus) treatment to improve its in vitro rumen degradability under non-sterile conditions. Methods: Corn stover was inoculated with Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), and an equal mixture of these strains, and ensiled for 0, 3, 7, 14, and 28 days. After each period, a portion of the silage was sampled to assess the silage quality, and another portion of the silage was further treated with I. lacteus at 28℃ for 28 d. All the samples were analyzed for fermentation quality, chemical composition, and in vitro gas production (IVGP) as a measure of rumen fermentation capacity. Results: Lactic acid bacteria (LAB) was found to improve the silage quality of the corn stover, and the corn stover silage inoculated with L. plantarum produced more lactic acid and higher IVGP than other silage groups. The I. lacteus colonies flourished in the early stage of corn stover silage, especially on the 3-d corn stover silage inoculated with both L. plantarum and L. buchneri. This led to an 18% decrease in the acid detergent lignin content, and a 49.6% increase in IVGP compared with the raw stover. Conclusion: The combination of ensiling with the mixed LAB inoculation and I. lacteus treatment provided a cost-effective method for the improvement of the IVGP of corn stover from 164.8 mL/g organic matter (OM) to 246.6 mL/g OM.