• Title/Summary/Keyword: Lactiplantibacillus plantarum subsp. plantarum

Search Result 3, Processing Time 0.014 seconds

Enhanced Production of C30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T

  • Siziya, Inonge Noni;Yoon, Deok Jun;Kim, Mibang;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.892-901
    • /
    • 2022
  • The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25℃ incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.

Characterization and Identification of Lactic Acid Bacteria Isolated from Fermented Milks in Iran (이란 발효 유제품에서 분리한 유산균의 특성)

  • Hyoju Park;Dong-June Park;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.211-218
    • /
    • 2023
  • This study aimed to identify lactic acid bacteria isolated from eight fermented milk products in Iran. We enumerated Lactobacillus species using De Man-Rogosa-Sharpe (MRS)-maltose and MRS agar with pH adjusted to 5.2, as well as assessment at 37℃ for 48 hr, studied Streptococcus spp. using M17 agar at 43℃ for 24 hr, and assessed Bifidobacterium species using nalidixic acid, paromomycin sulfate, neomycin sulfate, and lithium chloride (BL-NPNL) agar at 37℃ for 48 hr. The total viable Streptococcus spp. cell in fermented milk varied at 4.73-8.83 log CFU/mL. However, Bifidobacterium spp. were not detected in any of the tested samples. Lactobacilli were not detected in four of the eight samples, and viable Lactobacilli cells in the remaining four samples ranged 2.48-3.85 log CFU/mL. The pH of the tested samples ranged 3.53-4.19, and soluble solids (Brix measurement) ranged 7.5%-17.9%. A total of 130 isolates of gram-positive catalase-positive bacteria were characterized at the species level using 16S rRNA sequencing. Sequence analysis identified six species: Streptococcus thermophilus, Lactobacillus delbrueckii subsp. sunkii, Lactobacillus delbrueckii subsp. indicus, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Levilactobacillus brevis.

Comparison of Bioconversion Ability and Biological Activities of Single and Multi-Strain Probiotics for an Active Molecule in Roasted Tartary Buckwheat (단일 및 복합 프로바이오틱스 균주에 의한 쓴메밀 내 Rutin의 Quercetin으로의 생물전환 및 이의 생리활성 비교)

  • Song-in Kim;Eunbee Cho;Kyohee Cho;Chang Kwon;Seok-hee Lim;Jong Won Kim;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • In this study, we aimed to evaluate the bioconversion ability of single (Lactiplantibacillus plantarum CBT LP3, Lactococcus lactis subsp. lactis CBT SL6, Streptococcus thermophilus CBT ST3) and multi-strain probiotics to convert rutin to quercetin in roasted tartary buckwheat, and to assess their biological activities. To evaluate the bioconversion efficiency, each strain was cultured for 24 h in MRS media with 5% roasted tartary buckwheat 'Hwangguem-Miso' powder. After then, rutin and quercetin contents were determined by HPLC. Additionally, the biological activities were compared before and after bioconversion of an ingredient. Anti-oxidant effects were measured by DPPH and ABTS assays. Anti-inflammatory effects were determined by measuring NO production, and levels of iNOS, TNF-α, IL-6 and IL-4 using an LPS-induced Raw 264.7 cell model. The bioconversion rate under the combination of three species of probiotics significantly increased more than single species. Antioxidant efficacy results showed the highest activity when the combination of three species of probiotics cultured. The pro-inflammatory factors such as nitric oxide, iNOS, TNF-a, and IL-6 were significantly decreased when the three types of probiotics were combined than single strain was cultured. In addition, level in the anti-inflammatory factor IL-4 was increased. The multi-strain probiotics showed increased bioconversion efficiency, effects of anti-oxidant and anti-inflammatory compared to the single strain. These findings suggest that the fermentation of tartary buckwheat by probiotics may be a valuable candidate for developing functional foods with anti-oxidation and anti-inflammation.