• Title/Summary/Keyword: Lactiplantibacillus plantarum

Search Result 44, Processing Time 0.027 seconds

Statistical Optimization of Culture Conditions for Lactobacillus Strains using Response Surface Methodology (반응표면분석법을 이용한 Lactobacillus 균주 배양조건의 통계적 최적화)

  • Young Min Hwang;Hee-Seok Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.338-346
    • /
    • 2023
  • The demand for probiotic products has been steadily increasing, and Lactobacillus strains are widely used and are currently the most popular probiotics. Optimizing culture conditions for Lactobacillus production for use as probiotics will enhance their profitability by reducing production costs and time. Statistical analysis using response surface methodology revealed the following optimal sets of independent variables: 22.55 h (cultivation time), 25℃ (cultivation temperature), and 3.41% (w/w, prebiotics concentration) for Lactobacillus acidophilus; 24 h, 30.86℃, and 2% (w/w) for Lactiplantibacillus plantarum; 66.67 h, 35℃, and 3.41% (w/w) for Lacticaseibacillus rhamnosus. Actual outcomes using predicted optimal conditions for Lactobacillus strains have been confirmed to closely match predicted results. This study will provide valuable guidelines for high yield Lactobacillus production.

Reduction of Insulin Resistance by Momordica Charantia with Lactobacillus Acidophilus CBT-LA1 or Lactiplantibacillus Plantarum CBT-LP3 Improves Hepatosteatosis

  • Dong-Jin Kim;Ju Sung Lee;Seungwoo Kim;Sang Kyun Park;Yeo-Sang Yoon;Yougku Ryu;Myung Jun Chung
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.3
    • /
    • pp.275-287
    • /
    • 2024
  • Insulin resistance is a primary risk factor for developing diabetes. However, diabetes drugs generally focus on regulating and lowering patients' blood glucose levels. In recent years, diverse materials have been evaluated to improve insulin resistance and hinder the development of diabetes. Momordica charantia extract (MCE) and lactic acid bacteria (LAB) have been considered as potential therapeutic agents against insulin resistance and hyperglycemia. In a streptozotocin-induced type 1 diabetes animal model, treatment with MCE and LAB had no effect on hyperglycemia. To evaluate the effect of MCE and LAB on insulin resistance, we chose a high-fat diet-induced insulin resistance model and co-administered MCE and Lactobacillus Acidophilus CBT-LA1, Lactiplantibacillus plantarum CBT-LP3, or Lacticaseibacillus rhamnosus CBT-LR5. MCE with CBT-LA1 or CBT-LP3 improved insulin resistance and hepatosteatosis. However, the effect of MCE and MCE with CBT-LR5 was weaker than the effect of MCE with CBT-LA1 or CBT-LP3. Momordica charantia induced insulin secretion from RIN-m5F in a dose-dependent manner. Interestingly, CBT-LA1 and CBT-LP3 enhanced the insulin secretion of MCE. These results suggest that the co-administration of MCE and a specific LAB is one approach for overcoming insulin resistance and hyperglycemia.

Applying Multi-Response Optimization to Explore Fermentation Conditions of Probiotics (프로바이오틱 유산균 발효조건 탐색을 위한 다반응 최적화의 활용)

  • Sungsue Rheem
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.45-56
    • /
    • 2023
  • This review serves two purposes: first, to promote the use of improved optimization techniques in response surface methodology (RSM); and second, to enhance the optimum conditions for the fermentation of probiotics. According to research in dairy science, Lactiplantibacillus plantarum K79 is a candidate probiotic that has beneficial health effects, such as lowering blood pressure. The optimum conditions for L. plantarumK79 to produce peptides with angiotensin-converting enzyme (ACE) inhibitory activity were proposed, through modeling each of ACE inhibitory activity and pH as a function of the four factors that are skim milk concentration (%), incubation temperature (℃), incubation time (hours), and starter added amount (%). To estimate optimum conditions, the researchers employed a desirability-based multi-response optimization approach, utilizing third-order models with a nonsignificant lack of fit. The estimated optimum fermentation conditions for L. plantarum K79 were as follows: a skim milk concentration of 10.76%, an incubation temperature of 36.9℃, an incubation time of 23.76 hours, and a starter added amount of 0.098%. Under these conditions, the predicted ACE inhibitory activity was 91.047%, and the predicted pH was 4.6. These predicted values achieved the objectives of the multi-response optimization in this study.

Changes in Fermentation Characteristics and Bacterial Communities of Whole Crop Rice Silage during Ensiling Period (저장기간에 따른 사료용 벼 사일리지의 발효특성 및 미생물상 변화)

  • Mirae Oh;Hyung Soo Park;Bo Ram Choi;Jae Hoon Woo;Seung Min Jeong;Ji Hye Kim;Bae Hun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Understanding changes in fermentation characteristics and microbial populations of forage silage during ensiling is of interest for improving the nutrient value of the feed for ruminants. This study was conducted to investigate the changes in fermentation characteristics and bacterial communities of whole crop rice (WCR) silage during the ensiling period. The chemical compositions, pH, organic acids and bacterial communities were evaluated at 0, 3, 6, and 12 months after ensiling. The bacterial communities were classified at both the genus and species levels. The dry matter content of WCR silage decreased with the length of storage (p<0.05), but there was no significant difference in crude protein and NDF contents. Following fermentation, the pH level of WCR silage was lower than the initial level. The lactic acid content remained at high levels for 3 to 6 months after ensiling, followed by a sharp decline at 12 months (p<0.05). Before fermentation, the WCR was dominated by Weissella (30.8%) and Pantoea (20.2%). Growth of Lactiplantibacillus plantarum (31.4%) was observed at 3 months after ensiling. At 6 months, there was a decrease in Lactiplantibacillus plantarum (10.2%) and an increase in Levilactobacillus brevis (12.8%), resulting in increased bacteria diversity until that period. The WCR silage was dominated by Lentilactobacillus buchneri (71.2%) and Lacticaseibacillus casei (27.0%) with a sharp reduction in diversity at 12 months. Overall, the WCR silage maintained satisfactory fermentation quality over a 12-month ensiling period. Furthermore, the fermentation characteristics of silage were found to be correlated to bacterial microbiome.

Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria

  • Se Rin Choi;Hyunji Lee;Digar Singh;Donghyun Cho;Jin-Oh Chung;Jong-Hwa Roh;Wan-Gi Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1317-1328
    • /
    • 2023
  • Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.

Efficacies of Potential Probiotic Candidates Isolated from Traditional Fermented Korean Foods in Stimulating Immunoglobulin A Secretion

  • Chang-Yong Choi;Chang-Hee Lee;Jun Yang;Seok-Jin Kang;In-Byung Park;Si-Won Park;Na-Young Lee;Hyun-Been Hwang;Hyun Sun Yun;Taehoon Chun
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.346-358
    • /
    • 2023
  • The aim of this study was to evaluate efficacies of selected lactic acid bacteria (LAB) in inducing immunoglobulin A (IgA) secretion. Twenty-five different LAB isolated from traditional fermented Korean foods were characterized for their probiotic properties and screened to identify those that could stimulate lamina propria cells (LPCs) from Peyer's patch to secret IgA in vitro. Among them, four strains (Lactiplantibacillus plantarum CJW55-10, Lactiplantibacillus pentosus CJW18-6, L. pentosus CJW56-11, and Pediococcus acidilactici CJN2696) were found to be strong IgA inducers. The number of IgA positive B cells and soluble IgA level were increased when LPCs were co-cultured with these LAB. Expression levels of toll-like receptor (TLR) such as TLR2 and TLR4 and secretion of interleuckin-6 were augmented in LPCs treated with these LAB. Further, we determined whether oral intake of these LAB enhanced IgA production in vivo. After one-week of daily oral administration, these LAB feed mice increased mucosal IgA and serum IgA. In conclusion, selected strains of LAB could induce systemic IgA secretion by activating lamina propria B cells in Peyer's patch and oral intake of selected strains of LAB can enhance systemic immunity by inducing mucosal IgA secretion.

Anti-obesity effects of lactic acid bacteria ferments cultured in industrial medium with ethanol extract of ramie leaf (Boehmeria nivea L.) (모싯잎 에탄올 추출물을 첨가한 산업용 배지에서 배양한 유산균 발효물의 항비만 효과)

  • Byung-Min Oh;Hyeon Hwa Oh;Geun-Seoup Song
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.161-172
    • /
    • 2024
  • This study investigated the anti-obesity effects of lactic acid bacteria ferments cultured in industrial medium with ethanol extract of ramie leaf (Boehmeria nivea L.). On the 4th day of fermentation, the maximum live cell counts were 8.75-8.85 log CFU/mL, pH was 3.74-3.79, and total acidity was 2.07-2.19%. The fermentation of lactic acid bacteria on the fourth day resulted in the amount of lactic acid reaching 1,676.03-1,910.12 mg%. The lipase inhibitory activities of Lactiplantibacillus plantarum (L. plantarum) JBLAB0101 (FRLPLA) and Lactobacillus rhamnosus GG (LGG, (FRLLGG)) ferments were 30.10%, and 25.63%, respectively, at a concentration of 0.5 mg/mL. The lipid accumulation, leptin production, PPAR-γ and SREBP-1c mRNA levels were decreased to 37.54%, 54.64%, 24.18%, and 31.32%, respectively, at 200 ㎍/mL concentration of FRLPLA. These results suggest that anti-obesity effect could be increased by lactic acid bacteria in industrial medium with extract of ramie leaf.

Impact of Prebiotic on Viability of Lactiplantibacillus plantarum D-2 by Encapsulation through Spray Drying and Its Commercialization Potential

  • Changheon Lee;Daeung Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1051-1058
    • /
    • 2024
  • This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96℃). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25℃. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.

Characterization and Identification of Lactic Acid Bacteria Isolated from Fermented Milks in Iran (이란 발효 유제품에서 분리한 유산균의 특성)

  • Hyoju Park;Dong-June Park;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.211-218
    • /
    • 2023
  • This study aimed to identify lactic acid bacteria isolated from eight fermented milk products in Iran. We enumerated Lactobacillus species using De Man-Rogosa-Sharpe (MRS)-maltose and MRS agar with pH adjusted to 5.2, as well as assessment at 37℃ for 48 hr, studied Streptococcus spp. using M17 agar at 43℃ for 24 hr, and assessed Bifidobacterium species using nalidixic acid, paromomycin sulfate, neomycin sulfate, and lithium chloride (BL-NPNL) agar at 37℃ for 48 hr. The total viable Streptococcus spp. cell in fermented milk varied at 4.73-8.83 log CFU/mL. However, Bifidobacterium spp. were not detected in any of the tested samples. Lactobacilli were not detected in four of the eight samples, and viable Lactobacilli cells in the remaining four samples ranged 2.48-3.85 log CFU/mL. The pH of the tested samples ranged 3.53-4.19, and soluble solids (Brix measurement) ranged 7.5%-17.9%. A total of 130 isolates of gram-positive catalase-positive bacteria were characterized at the species level using 16S rRNA sequencing. Sequence analysis identified six species: Streptococcus thermophilus, Lactobacillus delbrueckii subsp. sunkii, Lactobacillus delbrueckii subsp. indicus, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Levilactobacillus brevis.

Improving the Viability of Freeze-dried Probiotics Using a Lysine-based Rehydration Mixture

  • Arellano, Karina;Park, Haryung;Kim, Bobae;Yeo, Subin;Jo, Hyunjoo;Kim, Jin-Hak;Ji, Yosep;Holzapfel, Wilhelm H.
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.157-166
    • /
    • 2021
  • The probiotic market is constantly continuing to grow, concomitantly with a widening in the range and diversity of probiotic products. Probiotics are defined as live microorganisms that provide a benefit to the host when consumed at a proper dose; the viability of a probiotic is therefore of crucial importance for its efficacy. Many products undergo lyophilization for maintaining their shelf-life. Unfortunately, this procedure may damage the integrity of the cells due to stress conditions during both the freezing and (vacuum-) drying process, thereby impacting their functionality. We propose a lysine-based mixture for rehydration of freeze-dried probiotics for improving their viability during in vitro simulated gastric and duodenum stress conditions. Measurement of the zeta potential served as an indicator of cell integrity and efficacy of this mixture, while functionality was estimated by adhesion to a human enterocyte-like Caco-2 cell-line. The freeze-dried bacteria exhibited a significantly different zeta potential compared to fresh cultures; however, this condition could be restored by rehydration with the lysine mixture. Recovery of the surface charge was found to influence adhesion ability to the Caco-2 cell-line. The optimum lysine concentration of the formulation, designated "Zeta-bio", was found to be 0.03 M for improving the viability of Lactiplantibacillus plantarum Lp-115 by up to 13.86% and a 7-strain mixture (400B) to 41.99% compared to the control rehydrated with distilled water. In addition, the lysine Zeta-bio formulation notably increased the adherence ability of lyophilized Lp-115 to the Caco-2 cell-line after subjected to the in vitro stress conditions of the simulated gastrointestinal tract passage.