• Title/Summary/Keyword: Lactic acid production

Search Result 1,045, Processing Time 0.021 seconds

The Production of Calcium Lactate by Lactobacillus sporogenes II. Production of Calcium Lactate (Lactobacillus sporgenes에 의한 젖산칼슘 생산 II. 젖산 칼슘 제조)

  • Lee, Gye-Geun;Kim, Yeong-Man;Min, Gyeong-Chan
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.102-107
    • /
    • 1988
  • Production of calcium lactate very useful for medical supplies of Ca-therapy was obtained by lactic acid fermentation of lactobacillus sporogenes, a spore forming lactic acid bacterium. Corn steep liquor 1%, soybean enzyme hydrolysate 3%, yeast extract powder 2% can substitute for yeast extract and peptone as nutrient sort traces in fermentation medium using 10% glucose concentration. In the calcium lactate production medium containing yeast extract powder 2%, glucose 18%, CaCO3 12%, the lactic acid fermentation was carried out at 45$^{\circ}C$ for 4days with continuous agitation of 100 rpm. As results, fermentation yield was 97.5%. The five steps such as protein coagulation, decolorizing evaporating, crystallizing, and drying were carried out to harvest calcium lactate from 10l of supernatant of fermented medium to be removed cell and CaCO3. As results, 2065.0g of white crystal calcium lactate dihyrate was recovered and a yield of 84.9% was obtained.

  • PDF

Characteristics of Lactic Acid Production by Lactobacillus buchneri Isolated from Kimchi (김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성)

  • Sim, Hyun-Su;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • Lactic acid is a useful platform chemical for a wide range of food and industrial applications such as pharmaceuticals and cosmetics. Among 313 strains of lactic acid bacteria isolated from different traditional Korean fermented foods, eight Lactobacillus strains effectively utilized xylose as a carbon source to produce lactic acid. A lactic acid bacterium identified as Lactobacillus buchneri produced the highest amount of lactic acid from xylose under anaerobic conditions. The optimum xylose concentration and incubation temperature were 50 g/l and 37℃, respectively; under these conditions, 22.3 g/l lactic acid was produced.

Isolation and Characterization of a Novel Lactic Acid Bacterium for the Production of Lactic Acid

  • Wee, Young-Jung;Yun, Jong-Sun;Park, Don-Hee;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • We isolated a novel lactic acid bacterium from a Korean traditional fermented food, soybean paste. The newly isolated strain, dubbed RKY2, grew well on glucose, sucrose, galactose, and fructose, but it could not utilize xylose, starch, or glycerol. When the partially amplified 16S rDNA sequence (772 bp) of the strain RKY2 was compared with 10 reference strains, it was found to be most similar to Lactobacillus pentosus JCM $1588^T$, with 99.74% similarity. There-fore, the strain RKY2 was renamed Lactobacillus sp. RKY2, which has been deposited in the Korean Collection for Type Cultures as KCTC 10353BP. Lactobacillus sp. RKY2 was found to be a homofermentative lactic acid bacterium, because its end-product from glucose metabolism was found to be mainly lactic acid. It could produce more than 90 g/L of lactic acid from MRS medium supplemented with 100 g/L of glucose, with 5.2 g $L^-1$ $h^-1$ of productivity and 0.95 g/g of lactic acid yield.

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.

Immune Enhancing Effect by Ethanol Extract of Ailantias altissima (가죽나무 에탄올 추출물에 의한 면역증강 효과)

  • Gil, Na-Young;Kim, Sun-Hee;Choi, Bo-Young;Mun, Ji-Young;Yeo, Soo-Hwan;Kim, So-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.940-948
    • /
    • 2018
  • The aim of this study was to investigate the immune activity of Ailantias altissima as an active ingredient on the immune enhancement by mixing ethanol extract with lactic acid bacteria (LAB). The activity of $NF-{\kappa}B/AP1$ transcription factor increased by $NF-{\kappa}B$ activity when mixed with LAB samples rather than with the extract alone. Nitric oxide (NO) production was similar in ethanol extract alone group and LPS treatment group. Mixing Ailantias altissima extract and lactic acid bacteria led to low NO production. The cytokine productivity of $TNF-{\alpha}$ significantly increased in Ailantias altissima extract when treated with LPS, and increased even more when mixed with lactic acid bacteria. The $IL-1{\beta}$ cytokine production was high when the Ailantias altissima extract were treated alone, but no $IL-1{\beta}$ cytokine was produced in the mixtures with isolates. The combination of the ethanol extract of the Ailantias altissima and the lactic acid bacteria was found to be effective in the immune function. Consequently, the ingredient to combine Ailantias altissima extract and lactic acid bacteria can be effectively used for development of the health functional food on the prevention and treatment of hypoimmunities.

Production of GABA (gamma amino butyric acid) by Lactic Acid Bacteria

  • Kook, Moo-Chang;Cho, Seok-Cheol
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.377-389
    • /
    • 2013
  • Gamma-amino butyric acid (GABA) is a kind of pharmacological and biological component and its application is wide and useful in Korea specially, becoming aging society in the near feature. GABA is request special dose for the purposed biological effect but the production of concentrated GABA is very difficult due to low concentration of glutamic acid existed in the fermentation broth. To increase GABA concentrate using fermentation technology, high content of glutamic acid is required. For this reason, various strains which have the glutamic acid decarboxylase (GAD) and can convert glutamic acid to GABA, were isolated from various fermented foods. Most of GABA producing strains are lactic acid bacteria isolated from kimchi, especially added monosodium glutamate (MSG) as a taste enhancer. Optimizing the formulation of culture media and the culture condition, GABA conversion yield and amounts were increased. Finally GABA concentration of fermentation broth in batch or fed batch fermentation reached 660 mM or 1000 mM, respectively. Furthermore formulation of culture media for GABA production developed commercially. Many studies about GABA-rich product have been continued, so GABA-rich kimchi, cheese, yogurt, black raspberry juice and tomato juices has been also developed. In Korea many biological effects of GABA are evaluated recently and GABA will be expected to be used in multipurpose.

Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant (한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성)

  • Park, Jong-Gil;Yun, Suk-Young;Oh, Se-Jong;Shin, Jung-Gul;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1244-1247
    • /
    • 2003
  • The purpose of this study was to isolate lactic acid bacteria that produced L(+) lactic acid from infant feces. Thirteen colonies were isolated with a MRS-plate containing 0.5% $CaCO_3$ to determine their ability to produce lactic acid. Based on their lactic acid production, 10 strains of Lactobacillus were identified to assess the ratio of lactate isomer using HPLC. A strain producing L-lactic acid was identified as Lactobacillus acidophilus, using API carbohydrate fermentation patterns and physiological tests, and named KY1909. The strain exhibited good acid tolerance in an artificial gastric juice as well as high bile resistance in MRS containing 0.5% bile acids. L. acidophilus KY1909 produced D(-) and L(+) lactic acid at a ratio of 6 : 94; whereas commercial strains of Lactobacillus acidophilus produced D(-) and L(+) lactic acid at a ratio of 1 : 1. These results demonstrate the L. acidophilus KY1909 can be utilized in fermented milk products and dietary supplements as a probiotic culture.

Production of Fermented Saccharina Japonica Extract with Enhanced GABA Content (GABA 함량이 강화된 발효다시마 추출액 제조)

  • Hur, Sun-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.517-526
    • /
    • 2022
  • The purpose of this study was to enhance the gamma-aminobutyric acid (GABA) production of sea tangle extracts, through techniques based on enzymatic hydrolysis and the addition of mixed fermentative lactic acid bacteria. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. L. plantarum KCTC 21004, L. acidophilus KCTC 3164 and L. sakei subsp. sakei KCTC 3598 were selected as the suitable strains for GABA production. As for the characteristics of fermentation of lactic acid bacteria using the selected strain, as the fermentation time increased, the titrated acidity increased and the pH showed a tendency to decrease. Among the three strains with excellent GABA production ability, L. plantarum KCTC 21004 showed excellent GABA production of 136.4 mg/100g. These research results are expected to be provided a basis for the utilization of lactic acid bacteria in GABA production using a sea tangle extract.

Direct Fermentation of Potato Starch in Wastewater to Lactic Acid by Rhizopus oryzae

  • Huang, Li-Ping;Bo Jin;Paul Lant;Xianliang Qiao;Jingwen Chen;Wence Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.245-251
    • /
    • 2004
  • The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/ L at pH 6.0 and 30$^{\circ}C$ was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%∼85.5% associated with 1.5∼2.0 g/L fungal biomass produced in 36 h of fermentation.