• Title/Summary/Keyword: Lactic acid fermentation extract

Search Result 222, Processing Time 0.023 seconds

A Study on Industrial Media for Production of Lactic acid in Batch and Continuous Fermentations (회분식 및 연속배양에 있어서 고농도 젖산의 생산을 위한 공업용 배지연구)

  • 김양훈;이기범;문승현
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.181-187
    • /
    • 1999
  • We have investigated industrial media for lactic acid fermentation to reduce the cost of nitrogen sources. Corn steep liquor (CSL) was successfully used at 5% (v/v) in batch fermentations. Use of soluble CSL improved the productivity about 20% with an advantage of clearer fermentation broth. Yeast extract-complemented CSL improved the productivity about 20% with an advantage of clearer fermentation broth. Yeast extract-complemented CSL media further increased the increased the productivity. It was found that 3.1 g/L yeast extract and 5% CSL could be an effective substitute for 15 g/L yeast extract in 10% glucose medium. Brewing yeast was also used as a sole nitrogen source equivalent to 5% CSL. A continuous culture coupled with cell-recycle by microfiltration at the dilution rate of 0.05-0.065 h-1 led to the highest lactic acid productivity. Lactic acid was recovered by electrodialysis from the cell free broth. Depleted cell free broth supplemented with 5-10 g/L of yeast extract performed reasonably in batch and continuous cultures. Reuse of the fermentation broth may reduce the cost of raw materials as well as minimize the fermentation wastes.

  • PDF

Fermentation Characteristics of Set-Type Yoghurt from Milk Added with Mugwort Extract (쑥 추출물이 첨가된 Set-Type Yoghurt의 발효 특성)

  • 배인휴;홍기룡;오동환;박정로;최성희
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2000
  • This study was carried out to investigate the fermentation characteristics and storage of set-type yoghurt added mugwort extracts(AME) such as pH, growth of lactic acid bacteria, number of viable cells, viscosity, and sensory characteristics during 24 hours fermentation and 15 days storage. Addition of mugwort extracts was grown rapidly of lactic acid bacteria rather than that of control and also 4 or 8% AME groups were grown similar to control. The drop of AME pH of broth was less compared with control during incubation of lactic acid bacteria. The growth of lactic acid bacteria during incubation of AME yoghurt was not different of viable cell count between AME group and control in beginning time, but the viable cell count of AME groups were increased depended opon addition quantity of AME in ending time. Addition of mugwort extracts was not affect on pH change during yoghurt fermentation and increased a lactic acid bacteria number as well as no effect of yoghurt fermentation in ending time. The viscosity of yoghurt was almost not changed 3 hours after yoghurt mix and increased rapidly 6 hours after yoghurt mix. Although control and 0.5% AME group showed maximum viscosity at 18 hours of fermentation, 1 and 2% AME group showed linear increase until 24 hours of fermentation. Mugwort did not affect pH and viable cel number of lactic acid bacteria during 15 days storage 24 hours after fermentation. Sensory evaluation of the AME yoghurt showed that flavour, texture and acid taste were not affected by addition of mugwort. However, the appearance and taste were dropped by addition of mugwort.

  • PDF

Changes in Kimchi Quality as Affected by the Addition of Sasa borealis Makino Extract (조릿대(Sasa borealis Makino) 추출물 첨가가 배추김치의 품질에 미치는 영향)

  • Yook, Hong-Sun;Jo, Ji-Eun;Kim, Kyung-Hee;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.405-412
    • /
    • 2010
  • This study was focused on finding the potential of hot water extract of bamboo shoot (Sasa borealis Makino) on the fermentation of Kimchi made with Chinese cabbage. The properties of Kimchi were examined up to 28 days of storage. The pH and acidity decreased regardless of treatments and showed no significant difference between treatments. There was a decreasing tendency of both total and reducing sugars in kimchi but the addition of bamboo extract did not affect the soluble sugar levels. Interestingly, bamboo extracts affected the lactic acid fermentation and ripening, resulting in the increase of lactic acid in bamboo extract treatment. Number of total bacterial cell of additive group is higher than control one, probably due to the stimulative effect of bamboo extract on bacterial growth. Level of lactic acid bacteria was also higher in the additive group, thus, it is considered that bamboo extract appeared to enhance the proliferation of lactic acid bacteria. The acceptability of treated Kimchi was higher in general. And results of intensity evaluation in color and texture were higher as well by addition of bamboo extract.

The Production of Calcium Lactate by Lactobacillus sporogenes II. Production of Calcium Lactate (Lactobacillus sporgenes에 의한 젖산칼슘 생산 II. 젖산 칼슘 제조)

  • Lee, Gye-Geun;Kim, Yeong-Man;Min, Gyeong-Chan
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.102-107
    • /
    • 1988
  • Production of calcium lactate very useful for medical supplies of Ca-therapy was obtained by lactic acid fermentation of lactobacillus sporogenes, a spore forming lactic acid bacterium. Corn steep liquor 1%, soybean enzyme hydrolysate 3%, yeast extract powder 2% can substitute for yeast extract and peptone as nutrient sort traces in fermentation medium using 10% glucose concentration. In the calcium lactate production medium containing yeast extract powder 2%, glucose 18%, CaCO3 12%, the lactic acid fermentation was carried out at 45$^{\circ}C$ for 4days with continuous agitation of 100 rpm. As results, fermentation yield was 97.5%. The five steps such as protein coagulation, decolorizing evaporating, crystallizing, and drying were carried out to harvest calcium lactate from 10l of supernatant of fermented medium to be removed cell and CaCO3. As results, 2065.0g of white crystal calcium lactate dihyrate was recovered and a yield of 84.9% was obtained.

  • PDF

Changes in Enzyme Activities and Population of Lactic Acid Bacteria during the Kimchi Fermentation Supplemented with Water Extract of Pine Needle (솔잎(Pinus densiflora Sieb. et Zucc.) 물추출물 첨가김치의 숙성 중 젖산균수와 효소활성의 변화)

  • 오영애;최경호;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.244-251
    • /
    • 1998
  • To understand the effect of supplement of water extract of pine needle(WEPN) on shelf-life enhancement of the kimchi, activities of four enzymes and number of lactic acid bacteria, during fermentation of the kimchi, were assayed. Enzyme activities of kimchi fermented for 7 days with supplement by 2% water extract of pine needle showed amylase of 86.4%, protease of 85.8%, polygalacturonase of 61.5% and $\beta$-galactosidase of 58.8% against the control kimchi. WEPN showed weak inhibitory effect when it was applied to the isolated enzymes in vitro then those menifested by the kimchi in vivo. Number of total bacterial cell of WEPN supplemented kimchi increased by 10 folds than control between 7 to 14 days of fermentation. On contrast, number of lactic acid bacteria decreased maximaly to 21% of control by fermentation. The clear zone formed on paper disk by WEPN against L. plantarum was larger than that of Leu. mesenteroides.

  • PDF

Properties of Lactic Acid Bacteria That Cause Decrease in Post-Fermentation to Apply Product (후산 발효 적합 균주 선발 및 특성)

  • Sohn, Ji Yang;Kim, Sae Hun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • Emerging studies suggest that vegetables or fruit juices deemed to be potential alternative base medium for lactic acid bacteria fermentation. Until now, limited studies have been carried out to evaluate such applications. Thus, the objective of present study is that lactic acid bacteria were evaluated for their viability at low pH, growth during storage at low temperature, and $CO_2$ formation. Furthermore, the effects of grapefruit extract with respect to cell viability, sensory ability, and organic acid production were evaluated for these strains. The probiotic properties of the strains, including acid tolerance, bile tolerance, and adhesion to human intestinal epithelial cells (HT-29 cells), prebiotic characteristics, and safety features were examined. All strains survived in MRS medium broth adjusted to pH 3.8, at $10^{\circ}C$ for 6 days, and did not produce $CO_2$ to check post fermentation. The medium of grapefruit extract fermentation by Lactobacillus plantarum CJIH 203 resulted in maximal viable counts, compared with other strains, and the extract subsequently tasted sour due to the presence of lactic acid. Lactobacillus plantarum CJIH203 was highly resistant to artificial gastric juice and intestinal juice, while Lactococcus lactis SJ09 strongly adhered to HT-29 cells. Tagatose showed the greatest ability to enhance the growth of L. plantarum SJ21, relative to the other strains. All strains were verified by safety tests such as hemolysis, gelatin hydration, and urea degradation. Therefore, these strains could be promising candidates for use in reducing excessive post-fermentation and functional products.

  • PDF

Antioxidant Activity Study of Artemisia argyi H. Extract Fermented with Lactic Acid Bacteria (젖산균으로 발효한 섬애쑥(Artemisia argyi H.) 추출물의 항산화 활성 연구)

  • Ji Hyun Kim;Nan Kyung Kim;Ah Young Lee;Weon Taek Seo;Hyun Young Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Objectives: In this study, we investigated physicochemical characteristics and antioxidant activity of Artemisia argyi H. fermented with lactic acid bacteria. Methods: The A. argyi water extract was fermented using lactic acid bacteria isolated from kimchi at 30℃ for 96 h. To evaluate the physicochemical characteristics, we investigated pH, total acidity, viable cells, free sugars, free organic acids, and free amino acids contents during fermentation. In addition, we examined antioxidant activity of fermented Artemisia argyi H. by measurement of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazinyl (DPPH) and 2,2'-azubi-bus-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) scavenging activities. Results: During fermentation time, pH of fermented A. argyi was decreased from 4.57 to 3.22, and total acidity was increased from 0.39% to 1.63%. The number of lactic acid bacteria fermented A. argyi was increased from 1.28×107 CFU/ml to 3.75×108 CFU/ml during fermentation time. The free sugars of fermented A. argyi were confirmed glucose and sucrose. In addition, the organic acid content of fermented A. argyi was the highest in oxalic acid and lactic acid. In the composition of free amino acids, content of ornithine increased from 4.4 mg/100 g to 18.8 mg/100 g compared with non-fermented A. argyi. Furthermore, DPPH and ABTS+ radical scavenging activities of fermented A. argyi increased in a dose-dependent manner. Conclusions: In conclusion, our data suggest that lactic acid fermentation of A. argyi could be used as a functional food for antioxidants.

Effects of Kugija(Lycium chinesis Miller) on the Sensory Properties and Lactic Acid Bacterial count of Nabak Kimchi during Fermentation (구기자가 나박김치의 발효 중 관능적 특성과 젖산균수에 미치는 영향)

  • 정광자;김미정;장명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.521-528
    • /
    • 2003
  • This research was conducted to find the effects of the addition of kugija to the quality and conservativeness of Nabak kimchi. Kugija extract was prepared by boiling kugija fruits, at different ratios (1, 3, 5 and 7%; w/v) in water for 30 minutes. The changes in the sensory and microbiological properties of the Nabak kimchi were measured for 25 days, following the preparation at a uniform temperature of 10$^{\circ}C$, and compared to a control (distilled water without kugija). For the properties of acceptability, the Nabak kimchi treated with 3% kugija was evaluated as being best during the whole fermentation. The number of total cell counts and number of lactic acid microorganisms gradually increased to a maximum, and then decreased. It was the maximum for controlling and 1 % treatment on day 2, forand 3, 5 and 7% treatment on day 7. (Eds note: the highlighted sentence needs c1arification\ulcorner)This experimental study revealed the effect of kugija extract in enhancing the eating qualities on Nabak kimchi and retarding the fermentation over the initial seven days. The optimum levels of kugija extract on Nabak kimchi obtained through experiments was between 1 and 3% of the water content. Although 3% gave a better color, the fermentation-retarding effect and savory taste. The application of kugija extract could be domestically applied to improve the eating quality and the preservation of traditionally prepared Nabak kimchi.

Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry

  • Park, Seong-Eun;Seo, Seung-Ho;Lee, Kyoung In;Na, Chang-Su;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • Background: Ginseng contains many small metabolites such as amino acids, fatty acids, carbohydrates, and ginsenosides. However, little is known about the relationships between microorganisms and metabolites during the entire ginseng fermentation process. We investigated metabolic changes during ginseng fermentation according to the inoculation of food-compatible microorganisms. Methods: Gas chromatography mass spectrometry (GC-MS) datasets coupled with the multivariate statistical method for the purpose of latent-information extraction and sample classification were used for the evaluation of ginseng fermentation. Four different starter cultures (Saccharomyces bayanus, Bacillus subtilis, Lactobacillus plantarum, and Leuconostoc mesenteroide) were used for the ginseng extract fermentation. Results: The principal component analysis score plot and heat map showed a clear separation between ginseng extracts fermented with S. bayanus and other strains. The highest levels of fructose, maltose, and galactose in the ginseng extracts were found in ginseng extracts fermented with B. subtilis. The levels of succinic acid and malic acid in the ginseng extract fermented with S. bayanus as well as the levels of lactic acid, malonic acid, and hydroxypruvic acid in the ginseng extract fermented with lactic acid bacteria (L. plantarum and L. mesenteroide) were the highest. In the results of taste features analysis using an electronic tongue, the ginseng extracts fermented with lactic acid bacteria were significantly distinguished from other groups by a high index of sour taste probably due to high lactic acid contents. Conclusion: These results suggest that a metabolomics approach based on GC-MS can be a useful tool to understand ginseng fermentation and evaluate the fermentative characteristics of starter cultures.

Effects of prunus mume Sie. extract on growth of lactic acid bacteria isolated from kimchi and preservation of kimchi (매실 추출물이 김치 유산균의 성장과 김치의 저장성에 미치는 효과)

  • 채명희;최재순;박경남;최우정;이신호
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.292-297
    • /
    • 2002
  • This studies were carried out to investigate the effect of Prunus mume Sie. extract on growth of lactic acid bacteria isolated from kimchi and preservation of kimchi. Prunus mums Sie. extract inhibited the growth of homofermentative lactic acid bacteria and heterofermentative lactic acid bacteria isolated from kimchi. In early storage stage, the pH of Prunus mume Sie. extract added kimchi(PEAK) was lower than that of control. The pH of PEAK was higher than that of control after 25 days of fermentation. Titratable acidity, viable cell of total bacteria and lactic acid bacteria of the PEAK were lower than that of control during fermentation. The sensory quality of 1% PEAK was similar to control at 10 days of fermentation But overall acceptability of 3% PEAK decreased compare with l% PEAK.