• Title/Summary/Keyword: Lactic Acid Bacteria Starter Culture

Search Result 117, Processing Time 0.035 seconds

INCIDENCE OF LACTIC ACID BACTERIA ISOLATED FROM INDIGENOUS DAHI

  • Masud, T.;Sultana, K.;Shah, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.329-331
    • /
    • 1991
  • Fifty samples of indigenous dahi were collected randomly from the local market of Rawalpindi/Islamabad to determine the incidence of lactic acid bacteria. The micro-organisms isolated were Lactobacillus bulgaricus (86%), Streptococcus themophilus (80%), Streptococcus lactis (74%), Lactobacillus helveticus (34%), Streptococcus cremoris (30%), Lactobacillus casei (20%) and Lactobacillus acidophilus (14%) respectively. The results of the present study revealed that indigenous dahi contains mixtures of lactic acid bacteria and thus the quality of dahi may vary with the type of starter culture used for inoculation.

The Effects of Soybean Boiling Waste Liquor on the Enhancement of Lactic Acid Fermentation during Korean Traditional kanjang Mash Maturing (한국 재래식 간장덧 발효시 대두 자숙 폐액 첨가가 젖산발효 촉진에 미치는 영향)

  • Choi, Cheong;Im, Moo-Hyeog;Choi, Jong-Dong;Chung, Hyun-Chae;Kim, Young-Ho;Lee, Choon-Woo;Choi, Kwang-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.201-207
    • /
    • 1998
  • In order to evaluate the effects of addition of soybean boiling waste liquor (SBWL) and sugar and inoculation of the lactic acid bacteria and yeast starter culture in Korean traditional kanjang mash, three types of kanjang were prepared in a clay pot of 100 l volume and compared the characteristics of lactic acid fermentation. The mashing compositions of the types of kanjang were as follows: (1) control treatment mash was prepared with meju : 20% salt solution (1:4) and SBWL, (2) kanjang mash with 3.5% added sugar to the control type mash and (3) kanjang mash with 3.5% added sugar and inoculation of the lactic acid bacteria and yeast starter culture 35 days after mashing to the control type mash. (1), (2) and (3) of kanjang mash were found to be effective in increasing the lactic acid content and improving the organoleptic characteristics of kanjang. But the effect of yeast starter culture was not clear because osmophilic yeasts were inhibited by metabolite(acetic acid) produced by lactic acid bacteria. The lactic acid content of (1), (2) and (3) kanjang was 2.05, 2.38 and 2.91% respectively in 90 day-matured kanjang.

  • PDF

Growth Characteristics of Bacteriocin-Producing Lactococcus lactis subsp. hordniae JNU533 in a Glucose-Containing Skim Milk Medium

  • Jiho Shin;Subin Kim;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.138-148
    • /
    • 2023
  • In this study, Lactococcus lactis subsp. hordniae JNU533 (JNU533) was isolated from Swiss-type cheese, and the bacteriocin produced by this strain was characterized. The spot-on-lawn assay was used to determine the antimicrobial spectrum and characteristics of the JNU533-derived bacteriocin. Results confirmed that the JNU533-derived bacteriocin inhibited the growth of lactic acid bacteria. The size of the bacteriocin was approximately 4.9 kDa, and it was heat- and pH-stable under various temperature and pH conditions. Furthermore, the possibility of using JNU533 as a starter culture in the manufacturing of fermented dairy products was assessed. A single colony of JNU533 was inoculated into 10% skim milk containing 0.5% glucose to investigate its characteristics in milk culture. The decrease in the pH was similar to that elicited by Lactobacillus delbrueckii subsp. bulgaricus. Furthermore, the results confirmed that JNU533 inhibited the growth of various bacteria and could be used as a milk fermentation starter. This study highlights the characteristics of the bacteriocin produced by JNU533 and the growth features of this strain in a skim milk medium.

Effects of Temperature and Supplementation with Skim Milk Powder on Microbial and Proteolytic Properties During Storage of Cottage Cheese

  • Oh, Nam Su;Lee, Hyun Ah;Myung, Jae Hee;Joung, Jae Yeon;Lee, Ji Young;Shin, Yong Kook;Baick, Seung Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.795-802
    • /
    • 2014
  • The aim of this study was to determine the effects of temperature and supplementation with skim milk powder (SMP) on the microbial and proteolytic properties during the storage of cottage cheese. Cottage cheese was manufactured using skim milk with 2% SMP and without SMP as the control, and then stored at $5^{\circ}C$ or $12^{\circ}C$ during 28 days. The chemical composition of the cottage cheese and the survival of the cheese microbiota containing starter lactic acid bacteria (SLAB) and non-starter culture lactic acid bacteria (NSLAB) were evaluated. In addition, changes in the concentration of lactose and lactic acid were analyzed, and proteolysis was evaluated through the measurement of acid soluble nitrogen (ASN) and non-protein nitrogen (NPN), as well as electrophoresis profile analysis. The counts of SLAB and NSLAB increased through the addition of SMP and with a higher storage temperature ($12^{\circ}C$), which coincided with the results of the lactose decrease and lactic acid production. Collaborating with these microbial changes, of the end of storage for 28 days, the level of ASN in samples at $12^{\circ}C$ was higher than those at $5^{\circ}C$. The NPN content was also progressively increased in all samples stored at $12^{\circ}C$. Taken together, the rate of SLAB and NSLAB proliferation during storage at $12^{\circ}C$ was higher than at $5^{\circ}C$, and consequently it led to increased proteolysis in the cottage cheese during storage. However, it was relatively less affected by SMP fortification. These findings indicated that the storage temperature is the important factor for the quality of commercial cottage cheese.

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.

Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS

  • Ahmadsah, Lenny S.F.;Kim, Eiseul;Jung, Youn-Sik;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Samples of Laru (a fermentation starter) obtained from the upper part of Borneo Island were analyzed for their lactic acid bacteria (LAB) and fungal diversity using both a culture-independent method (PCR-DGGE) and culture-dependent methods (SDS-PAGE and MALDI-TOF MS). Pediococcus pentosaceus, Lactobacillus brevis, Saccharomycopsis fibuligera, Hyphopichia burtonii, and Kodamaea ohmeri were detected by all three methods. In addition, Weissella cibaria, Weissella paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Rhizopus oryzae/Amylomyces rouxii, Mucor indicus, and Candida intermedia were detected by PCR-DGGE. In contrast, Lactobacillus fermentum, Lactobacillus plantarum, Pichia anomala, Candida parapsilosis, and Candida orthopsilosis were detected only by the culture-dependent methods. Our results indicate that the culture-independent method can be used to determine whether multiple laru samples originated from the same manufacturing region; however, using the culture-independent and the two culture-dependent approaches in combination provides a more comprehensive overview of the laru microbiota.

Storage characteristics of frozen soy yogurt Prepared with different proteolytic enzymes and starter cultures (단백분해효소와 Starter Culture의 종류에 따른 frozen soy yogurt의 저장성)

  • Lee Sook-Young;Lee Jung-Eun
    • Korean journal of food and cookery science
    • /
    • v.21 no.2 s.86
    • /
    • pp.217-224
    • /
    • 2005
  • The storage characteristics of frozen soy yogurt prepared with hydrolyzed soy protein isolates were evaluated. In order to facilitate lactic fermentation bacteria grow and produce lactic acid as fast rate as possible, soy protein isolate(SPI) was hydrolyzed using two kinds of proteases; bromelain and a-chymotrypsin. The cultural systems employed thereafter for lactic fermentations were Bifidobacterium bifidum or B. bifidum and Lactobacillus bulgaricus. The viable cell counts, normal- and bile acid tolerances from the mixed cultures of B. bifidum and L. bulgaricus decreased sharply during the initial first 3 days of frozen storage and then showed a gradual decrease thereafter. Melt-down percent of the all frozen products have been favorably affected as was shown by less melting at raised testing temperature during 28 days of frozen storage except for the initial 3 days during which a minor change has been observed. Among the various volatile flavor components, the contents of acetaldehyde, acetone, diacetyl and methanol generally increased during the frozen storage. In sensory test, the frozen soy yogurt prepared with a-chymotrypsin and mixed culture of B. bifidum and L. bulgaricus was the most desirable, the highest scores in sourness, bitterness and mouthfeel.

Effect of biogenic amine forming and degrading bacteria on quality characteristics of Kimchi (바이오제닉 아민 생성균과 분해균이 김치의 품질 특성에 미치는 영향)

  • Lim, Eun-Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • The purpose of this study was to investigate the quality characteristics of kimchi prepared with a single starter culture of biogenic amines (BA)-forming lactic acid bacteria (LAB) or a combined starter cultures composed of BA-forming and BA-degrading LAB. As the fermentation proceeded, the lactic acid bacterial count, titratable acidity, and BA content in kimchi prepared with myeolchi-aekjeot were slightly higher than those of kimchi prepared with saeu-jeot. The amount and type of BA produced by LAB were mostly strain dependent rather than species specific. Among all of the isolated LAB strains, the highest levels of cadaverine, histamine, putrescine and tyramine were produced by Leuconostoc mesenteroides MBK32, Lactobacillus brevis MBK34, Lactobacillus curvatus MBK31 and Enterococcus faecalis SBK31, respectively. BA-forming and BA-degrading starter cultures played an important role in the growth rate and organic acid-producing ability of LAB in kimchi. Interestingly, BA contents in kimchi increased by adding single BA-forming LAB starter were effectively lowered by the mixed cultures with BA-degrading LAB.

Effect of Chlorella Extract on Acid Production and Growth of Yoghurt Starter (Chlorella 추출물 첨가가 Yoghurt Starter의 산 생성 및 증식에 미치는 영향)

  • 조은정;남은숙;박신인
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.8-17
    • /
    • 2004
  • The effect of chlorella extract on the growth and acid production of yoghurt starter was investigated in order to prepare the yoghurt added with chlorella extract. The various levels of chlorella extract powder were added to skim milk medium and the medium was fermented by single or mixed culture of 4 types of lactic acid bacteria such as Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus bulgaricus. The changes in acid production(pH, titratable acidity) and number of viable cells of the medium during fermentation in skim milk added with chlorella extract powder have determined. When chlorella extract powder was added to skim milk medium at the levels of 0.5%, 1.0%, 2.0%, and 3.0%, the addition of 0.5% chlorella extract powder with the single culture of Str. thermophilus, Lac. casei, and Lac. bulgaricus showed the highest number of viable cell counts after 9 hours incubation. And also all single cultures of the yoghurt starter produced the higher amounts of acid with the addition of 0.5% chlorella extract powder. When chlorella extract powder was added to the medium at the levels of 0.25%, 0.5%, 1.0%, and 2.0%, the addition of lower lever(0.25∼0.5%) of chlorella extract powder with the mixed culture of the lactic acid bacteria showed more the acidity of pH and the number of viable cell counts. Among the treatments tested, the addition of 0.25% chlorella extract powder with the mixed culture of Str. thermophilus and Lac. casei produced the highest number of viable cell counts after 12 hours incubation. Therefore it was suggested to manufacture the yoghurt with the addition of 0.25% chlorella extract powder and the inoculation of mixed culture of Str. thermophilus and Lac. casei for on the stimulation of growth of the yoghurt starter.

Growth Characteristics of Bifidobacteria and Quality Characteristics of Soy Yogurt Prepared with Different Proteolytic Enzymes and Starter Culture (단백분해효소와 배양방법의 종류에 따른 비피더스균의 생육특성 및 soy yogurt의 품질특성)

  • Lee, Jung-Eun;Lee, Sook-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.603-610
    • /
    • 2001
  • The quality characteristics of soy yogurt prepared with different proteolytic enzymes and starter culture were evaluated. In order to facilitate the growth of lactic acid bacteria and subsequent production of lactic acid, soy protein isolate(SPI) was hydrolyzed using three kinds of proteases; one extracted from Aspergillus oryzae, bromelain and ${\alpha}-chymotrypsin$. The cultural systems employed thereafter for lactic fermentations were: 1) Bifidobacterium bifidum, 2) B. bifidum and Lactobacillus acidophilus, 3) B. bifidum and Lactobacillus bulgaricus. In soy yogurt, pH was more decreased by mixed culture method than single culture method with the accumulation of lactic acid. Viable cells of lactic acid bacteria in soy yogurts were measured $10^8$ CFU/g by the single culture method while $10^9$ CFU/g by the mixed culture method except ${\alpha}-chymotrypsin$ treatment. The amount of free amino acids in soy yogurts were substaintially increased by enzyme treatment. Viscosity was decreased by enzyme treatment, resulting in higher viscosity by ${\alpha}-chymotrypsin$ treatment. Water holding capacity was found to be higher in the single culture method in case of enzyme treatment. Among the various volatile flavor components isolated and identified after enzyme hydrolysis, acetaldehyde, ethanol, diacetyl, butyl alcohol contents tended to increase by lactic fermentation.

  • PDF