• 제목/요약/키워드: Laccase Phanerochaete chrysosporium

검색결과 10건 처리시간 0.022초

Phanerochaete chrysosporium과 Ceriporiopsis subvermispora 균주(菌株)의 Ligninase 및 Laccase 생산최적조건에 관한 연구(硏究) (Improved Production of Ligninase and Laccase by Phanerochaete chrysosporium and Ceriporiopsis subvermispora)

  • 강안석;차동열;김경수;홍인표;;유승헌
    • 한국균학회지
    • /
    • 제22권3호
    • /
    • pp.254-259
    • /
    • 1994
  • P. chrysosporium BKM-F-1767 및 C. subvermispora FP90031-SP. 균사를 이용하여 ligninase와 laccase 활성제고를 위한 배앙방법을 검토한 결과는 다음과 같다. P. chrysosporium의 왕복진탕배양시 (150 rpm) 배양액량은 45-60 ml가 ligninase 활성제고에 적합하였으며 60 ml 배양은 최대활성 출현일이 빨리 나타났다. C. subvermispora의 정치배양시, 2% M.E.+0.1% Y.E.+0.1% T.W.20+1mMVA 처리에서 ligninase 활성이 가장 높았고 laccase의 활성은 2% M.E.+0.1% Y.E.+0.1% T.W.20+6 mMBA에서 최고 수준을 나타내었다.

  • PDF

Phanerochaete chrysosporium의 고상발효를 통한 리그노셀룰로오즈 분해 및 당화 (Solid State Fermentation of Phanerochaete chrysosporium for Degradation and Saccharification of Lignocellulose)

  • ;이은광;윤현식
    • KSBB Journal
    • /
    • 제32권2호
    • /
    • pp.96-102
    • /
    • 2017
  • The lignocellulose that is a major component of spent coffee ground was degraded and saccharified. To implement the spent coffee, after several pre-treatments, inoculation of Phanerochaete chrysosporium and solid-state fermentation were conducted. The optimal temperature of the enzymes (lignin peroxidase, manganese peroxidase, xylanase, laccase, and cellulase) for degradation of lignocellulose by P. chrysosporium was found. We also measured the maximum activity of enzymes (lignin peroxidase 0.15 IU/mL, manganese peroxidase 0.90 IU/mL, laccase 0.11 IU/mL, cellulase 5.87 IU/mL, carboxymethyl cellulase 9.52 IU/mL, xylanase 1.16 IU/mL) used for the process. As a result, 4.73 mg/mL of reduced sugar was obtained and 61.02% of lignin was degraded by solid state fermentation of P. chrysosporium on spent coffee ground.

수질분해균(水質分解菌)에 의한 4,5,6-Trichloroguaiacol의 미생물분해(微生物分解) (Biodegradation of 4,5,6-Trichloroguaiacol by White Rot Fungi, Phanerochaete chrysosporium, Trametes versicolor, and Inonotus cuticularis)

  • 안세희;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권3호
    • /
    • pp.63-72
    • /
    • 1998
  • In order to evaluate the biodegradability and mechanism of 4,5,6-trichloroguaiacol (TCG) produced from bleaching process in pulp mill by Phanerochaete chrysosporium, Trametes versicolor, and Inonotus cuticularis, changes in TCG and its metabolites during biodegradation were analyzed by HPLC, and GC/MS spectrometry. By three fungi, the maximum biodegradability against TCG were very quickly reached, compared with other chlorinated aromatic compounds such as PCP. Within 24 hrs, T versicolor indicated up to 95% of TCG removal rate, and P. chrysosporium and I. cuticularis also showed more than 80%, and 90%, respectively. Particularly, in case of T. versicolor, the removal rate of TCG after 1 hr. incubation was reached to approximately 90%, implying very rapid metabolization of TCG. However, by analyzing the filtrates extracted from TCG containing culture by GC/MS, the major metabolites at initial stage of biodegradation were dimers, indicating that the added TCG monomers were quickly polymerized. The others were trichloroveratrole, dichloroguaiacol, and trichlorobenzoic acid, suggesting that TCG may be biodegraded by several sequential reactions such as polymerization, oxidation, methylation, dechlorination, and hydroxylation. In other experiments, the extracellular fluid which did not contain any fungal mycelia was used to evaluate the effect of mycelia on TCG biodegradation. The extracellular fluid of T. versicolor also biodegraded TCG up to 90% within 24hrs, but those of P. chrysosporium and I. cuticularis did not show any good biodegradability. T versicolor showed the highest value of laccase, and other two fungi indicated a little activity of lignin peroxidase (LiP) and manganese peroxidase (MnP). In addition, the laccase activity of T. versicolor was very linearly proportional to the removal rate of TCG during incubation, in other words, showing the induction effect against TCG. Consequently, the biodegradation of TCG was very dependent upon the activity of laccase.

  • PDF

목질분해효소에 의한 고지의 재활용 기술연구 (제1보) -목질분해균으로부터 조효소의 단리 (Studies on the Recycling Technology of the Waste Paper with Wood Degradable Enzyme(I) - Separation of Crude Enzyme from Wood Degradable fungi -)

  • 양재경;이중명;엄태진
    • 펄프종이기술
    • /
    • 제29권1호
    • /
    • pp.43-51
    • /
    • 1997
  • The various culture conditions of Trichoderma viride(ATCC 3454) and Phanerochaete chrysosporium(ATCC 26921) with glucose-pepton medium, Mandels medium, YMG medium for wood degradable enzyme were examined. Mycellium of the two species grew profusely on glucose-pepton medium. Maximum fungal growth was observed about 10days. But CMCase, Fpase, laccase activity in the culture medium with glucose-pepton was not detected. When grown in fermenter culture using Mandels medium, Trichoderma viride produced CMCase and Fpase. Its CMCase activity was 0.15 lU/ml and Fpase activity was 0.3 IU/ml within about 4-6days. Phanerochaete chrysosporium grown in a YMG medium gave the best enzyme activity when they were grown under stationary culture with an atmosphere of 100% oxygen. Levels of laccase activity of 3.0 mull were achieved in stationary culture under 100% oxygen. The enzyme condensation by ultrafiltration method caused a 2-fold(cellulase) and 6-fold(laccase) as compared to control activity.

  • PDF

목질 재료의 자기가수분해 및 효소당화에 관한 연구 (IV) - Laccase 및 Cellulase의 동시 이용 가능성 - (Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials (IV) - Simultaneous Utilization of Laccase and Cellulase -)

  • 조남석;임창숙;이재성
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권3호
    • /
    • pp.52-60
    • /
    • 1989
  • This study was carried out to know the possibility of simultaneous utilization of laccase from white-rot fungus with cellulase on enzymatic hydrolysis of cellulosic substrate from autohydrolyzed oak wood. Laccases from 3 white-rot fungi, Pleurotus ostreatus. Ganoderma lucidum, and Phanerochaete chrysosporium, were isolated, purified and measured their activities. The highest activity was shown in Pleurotus ostreatus and the lowest in Phanerochaete chrysosporium. Laccase from Pleurotus ostreatus has optimum pH of 5.94, Km value of 3.209 mM and appeared to be stable at relatively wide pH range, 4.7-8.72. Temperature stability showed that 60% activity was preserved after 40 minutes at $50^{\circ}C$. Laccase from Ganoderma lucidum reached to the maximum activity during 15-20 day incubation. This enzyme has optimum pH of 6.45, Km value of 6.71 mM and pH range of 5.0-9.0 for stabilization. 95% activity was preserved at $30^{\circ}C$ and 58% activity at $50^{\circ}C$. Concerned to the enzymatic hydrolysis of cellulosic substrate with both enzymes, cellulase and laccase, simultaneously, mixed culture filtrates and mycellium extracts were shown higher hydrolysis rates than those of Trichoderma viride. There were no significant differences in the extent of hydrolysis among various mixed culture filtrates and mycellium extracts.

  • PDF

Estrogenic Reduction of Styrene Monomer Degraded by Phanerochaete chrysosporium KFRI 20742

  • Lee Jae-Won;Lee Soo-Min;Hong Eui-Ju;Jeung Eui-Bae;Kang Ha-Young;Kim Myung-Kil;Choi In-Gyu
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.177-184
    • /
    • 2006
  • The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99 % during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.

Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별 (Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems)

  • 홍창영;김호용;장수경;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권1호
    • /
    • pp.19-32
    • /
    • 2013
  • 본 연구에서는 백색부후균의 리그닌 분해 효소 시스템을 이용하여, 다양한 균주 중에서 목질계 바이오매스 유기용매 전처리 과정에서 발생한 리그닌(유기용매 리그닌)의 생분해에 적합한 우수 균주를 선별하고자 하였다. 우선 분양받은 15개의 백색부후균을 대상으로 shallow stationary cultur (SSC)배지와 malt extract broth (MEB)배지에 유기용매 리그닌의 첨가에 따른 Remazol Brilliant Blue R (RBBR)의 흡광도 변화를 측정하였다. RBBR 탈색능 결과, SSC 배지에서 Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, Stereum hirsutum 등 6종의 백색부후균에서 급격한 흡광도 변화를 나타냈다. 배양 초기에 급격한 흡광도 변화를 나타낸 6개의 백색부후균을 대상으로 균체 외 단백질 농도 및 리그닌 분해 효소 활성을 측정하였다. 선발된 6개의 균 중에서 S. hirsutum과 P. chrysosporium은 유기용매 리그닌을 첨가한 실험구에서 높은 단백질 농도가 측정되었다. 반면, 리그닌 분해 효소 활성은 F. insularis에서 배양 6일째에 manganese peroxidase (MnP) 활성이 1,545 U/mg, laccase 활성은 1,259 U/mg으로 최고 활성을 나타냈다. 결론적으로, 균체 외 단백질 농도 및 리그닌 분해 효소 활성이 전반적으로 높았던 $STH^*$와 MnP 및 laccase의 활성이 가장 높은 FOI가 유기용매 리그닌 생분해에 유리하게 작용할 것으로 판단된다.

백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌- (Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine-)

  • 김명길;안원영
    • 임산에너지
    • /
    • 제17권1호
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝 (Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping)

  • 이종규;오은성
    • 한국균학회지
    • /
    • 제26권2호통권85호
    • /
    • pp.144-152
    • /
    • 1998
  • 선택적 리그닌 분해능을 가지고 생물펄프공정에 사용가능한 백색부후균을 얻기 위하여 94종류의 목재부후균을 검정하였고 선발된 7개종에 대하여 활엽수와 침엽수의 부후능력을 측정하였다. 우선 백색부후균은 셀룰로오즈 분해효소, 페놀산화효소, laccase, peroxidase 등의 효소활성을 간단한 방법으로 검정하여 선발하였는데, Bavendamm test에서 양성을 나타내는 대부분의 균들은 syringaldazine을 사용한 laccase test에서도 강한 반응을 나타낸 반면, 음성반응을 나타낸 대부분의 균들은 laccase와 peroxidase test에서도 음성반응을 나타내었다. 선택적 리그닌 분해능력을 지닌 부후균을 선발하기 위하여 부후균을 은사시나무와 일본잎갈나무(낙엽송) 목재블럭에 접종하여 12주간 배양한 후에 부후된 목재의 중량감소율, 리그닌 량의 감소, 형태적 변화들을 화학분석과 주사전자현미경을 통하여 분석하는 목재부후 실험을 실시하였다. 이 실험에서 사용한 거의 모든 균주는 목재블럭의 중량감소율이 일본잎갈나무 보다 은사시나무에서 2배이상 높게 나타났으며 균을 접종하지 않은 목재블럭에서는 중량감소가 전혀 나타나지 않았다. Ceriporiopsis subvermispora와 Phanerochaete chrysosporium이 다른 균주에 비해서 침엽수와 활엽수의 리그닌을 모두 잘 분해시키는 것으로 나타났으나 분해 능력은 Ceriporiopsis subvermispora가 더욱 우수하였다. Bjerkandera adusta와 미동정된 2균주는 은사시나무에서만 상대적으로 높은 리그닌 분해능력을 나타내었다. B. adusta는 모든 세포벽 성분을 동시에 분해시켜서 2차세포벽을 얇게 만들었으나 다른 균주들은 선택적 리그닌 분해력을 나타내어 두 세포의 세포벽 사이에 위치하는 중벽에 존재하는 리그닌을 분해시켜서 세포를 분리시키는 것이 관찰되었다.

  • PDF

백색부후균을 이용한 다환방향족 탄화수소(PAHs) 의 분해 (Biodegradation of Polycyclic Aromatic Hydrocarbons by White Rot Fungi)

  • 류원률;서윤수;장용근;조무환
    • KSBB Journal
    • /
    • 제15권3호
    • /
    • pp.262-267
    • /
    • 2000
  • The white rot fungi Phanerochaete chrysosporium(IFO 31249) Trametes sp and Pleurotus sp. were studied for their ability to degrade Polycyclic Aromatic Hydrocarbons(PAHs) using anthracene and pyrene as model compounds. The disapperarance anthracene and pyrene of from cultures of wild type strains. P chrysosporium Trametes sp. and Pleurotus sp was observed However the activities of ligninolytic enzymes were not detected in P chrysosporium cultures during degradation while ligninolytic enzymes were detected in both culture of Trametes sp. and Pleurotus sp. Therefore our results showed that PAHs was degraded under ligninolytic as well as nonligninolytic conditions. The results also indicate that lignin peroxidase(LiP) mananese peroxidase(MnP) and laccase are not essential for the biodegradation of PAHs by white rot fungi.

  • PDF