• 제목/요약/키워드: Laboratory soil test

검색결과 928건 처리시간 0.023초

Strength Characteristics of Soil Cement Reinforced by Natural Hair Fiber

  • Son, Moorak;Lee, Jaeyong
    • 한국지반환경공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.17-26
    • /
    • 2018
  • This study systematically examines the changes in the compressive and tensile strength of soil cement reinforced by natural hair fiber, which is regularly produced from human. Extensive experimental tests of various test specimens have been carried out in a laboratory. Several factors are considered, including the soil type, amount of cement, amount of fiber, fiber length, loading type, and curing age. The test results indicate that both the compressive and tensile strengths are significantly affected by the fiber, either increasing or decreasing depending on the conditions. The increase in tensile strength is significant in the sand-based soil cement due to the tensile resistance of the fiber which is interlocked with the surrounding soil or cement particles. The natural fiber provides a larger strain to failure due to its extensibility, which allows greater deformation. Based on the test results, natural hair fibers can be an effective and environmentally friendly way to improve soil ground subjected to tensile loading, such as an embankment slope, road subgrade, or landfill, thus reducing the cost for cement and waste treatment. The study results provide a useful information of better understanding the mechanical behavior of natural hair fiber in soil cement and the practical use of waste materials in civil engineering. The findings can be practically applied for improving earth structures under tensile loading.

공극수 오염이 시멘트 고화처리된 사질토에 미치는 영향 (The Influence of Pore Water Contamination on the Cement Treated Sandy Soil)

  • 유찬
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.144-152
    • /
    • 2003
  • Laboratory experiments were carried out to investigate the influence of pore water contamination on the treatment effect of sandy soil which was solidified by Portland cement. In the experiments, setting time of hydraulic cement that was mixed with contaminated mixing water was measured using Vicat equipment and observed the tendency of setting process with the kind of contaminants, organic or inorganic components. It was shown that organic contaminants of the mixing water affect largely on the initial setting process of hydraulic cement and inorganics, expecially heavy metals, did not affect on the initial setting process, otherwise it was appeared that setting time of the sandy soil that was contaminated with inorganic components was apparently faster than the sandy soil that did not include inorganic components even though organic concentrations was relatively low level (COD=200∼300) in the mixing water. The results of unconfined compression strength test (UCST) were well consistent with the results of Vicat equipment test.

Stabilization of Lateritic Soil with Eggshell Powder

  • Ndagijima, Jacques;Kim, Kanghyun;Kim, Seunghyun;Shin, Jongho
    • 한국지반환경공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.5-13
    • /
    • 2022
  • In tropical regions, lateritic soil is frequently used in road embankment. However, it is one of the sources of road failure owing to its low strength. Generally, cement and lime are used as stabilizers for lateritic soil, but they are not environmentally friendly. Some studies try to use eggshells, for they are food waste and share the same chemical composition as lime. Previous researchs have shown that eggshell powder could enhance the strength of lateritic soil. This research investigated the effect of particle size of the eggshell powder and the effect of the protein-membrane presence in the eggshell on stabilizing capacity of soil. Through laboratory tests, unconfined compressive strength was examined for various particle sizes. The particle size of eggshell powder ranging between 150 ㎛ and 88 ㎛ was appropriate size that made an excellent stabilizer at 3% concentration. On the other hand, the protein-membrane reduced the stabilizing ability of the eggshell powder when the content of eggshell powder is less than 4% in soil. Numerical analysis of road embankment was performed based on the results obtained in the laboratory tests. It is shown that the eggshell powder has improved the stability of the sub-base of the road embankment.

해안구조물 기초의 건설을 위해 울산지역에서의 심층혼합공법을 사용한 CMD-SOIL의 적용성 평가 (Evaluation of Applicability of CMD-SOIL using the Deep Mixing Method in Ulsan Area for the Construction of Coastal Structure Foundation)

  • 박재현;이광우;문경주;조대성
    • 한국지반신소재학회논문집
    • /
    • 제22권3호
    • /
    • pp.61-69
    • /
    • 2023
  • 세계 무역 및 항만 산업 환경이 변화함에 따라 선박의 대형화 및 고속화에 대한 대응 필요성이 높아지고 있다. 이에 따라 부산, 울산 등 광역도시를 중심으로 신항만의 건설이 이루어지고 있다. 일반적으로 신항만 건설은 모래 또는 자갈을 사용한 다짐공법이 적용되고 있다. 하지만 모래 또는 자갈이 부족하고, 단가상승으로 인해 경제성 확보가 어려워 최근에는 단시간에 요구되는 압축강도를 확보할 수 있는 심층혼합공법이 사용되고 있다. 따라서 본 연구에서는 순환자원을 이용한 CMD-SOIL을 울산지역에 적용하고, 실내 배합시험 및 현장 확인 보링 결과를 분석하여 적용성을 판단하고자 하였다. 시험결과, CMD-SOIL은 설계 배합강도 이상을 나타내었고, 고로슬래그 시멘트와 유사한 성능을 확보할 수 있는 것으로 분석되었다. 또한 현장에서의 확인 보링 결과, 설계 기준강도 이상을 충분히 확보할 수 있어 울산지역에서의 현장 적용성을 고려할 때 CMD-SOIL의 활용이 가능할 것으로 판단된다.

기계화 경작로의 포장공법 개발(지반공학) (Development of Pavement method for Farm Roads)

  • 송창섭;리신호;오무영;성찬용
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.431-437
    • /
    • 2000
  • The aim of the work described in this paper is to develope a pavement method for farm road. To this ends, a series of material test are conducted on in-situ soil which was mixed additives-coarse aggregate, polypropylene fiber, excellent soil compound etc. With the laboratory test results, in-situ pavement test was conducted during two years. The serious problem of the pavement is not appeared up to this time. And the measurement of field data is continued presently. The majority merits of this pavement method is low cost and using environmental materials.

  • PDF

초음파에 의한 오염토의 상대투수계수의 변화 (Sonication Effect on the Relative Permeability of contaminated Soil)

  • 김영욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권1호
    • /
    • pp.45-52
    • /
    • 2001
  • 토양 및 지하수의 오염문제가 심각해짐에 따라 오염물의 토양 및 지하수 내에서의 이동 특성에 관한 관심이 커지고 있다. 본 연구에서는 비용해성 흐름의 특성 및 그의 특성을 결정짓는 상대투수에 관한 기본적인 이해와 초음파가 상대투수에 미치는 영향에 관하여서도 고찰하였다. 실험 및 역해석의 결과로는 초음파가 오염물의 제거에 상당히 큰 영향을 끼치는 것으로 나타났으며 상대투수의 특성도 크게 변화되는 것으로 나타났다. 변화량은 $(C_{10})^2$의 함수로 나타낼 수 있었으며 ECLIPSE 100을 사용하여 초음파가 오염 복원 및 상대투수의 변화에 관한 연구에 활용 될 수 있음이 고찰되었다.

  • PDF

송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정 (Selection of the optimum mixture condition for stabilization of Songdo silty clay)

  • 김준영;장의룡;정충기;이용준;장순호;최정렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar;Ramanandan Saseendran;V. Sundaravel
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.453-462
    • /
    • 2023
  • Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.

모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성 (Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test)

  • 신광호;황철비;전상렬;이관호
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4588-4594
    • /
    • 2014
  • 본 연구에서는 연약지반에서의 경량콘크리트포장을 적용할 때의 안전성 평가를 위해 실제 포장체 사이즈의 1/30으로 축소한 모형을 이용하여 모래지반에서 실험을 실시하였다. 모형토조를 이용하여 지반을 조성하였고, 표준 말뚝재하시험(완속재하시험방법)을 이용하였다. 수직하중이 적용되는 말뚝기초의 슬래브의 중심에서 가까운 순으로 Case A, Case B, Case C로 구분하였고, 각각의 말뚝의 간격은 8cm로 하였다. 말뚝기초 모형시험결과 사질토지반에서 수직하중을 1.5kg에서 12kg로 증가시킬 때 포장체가 전체적으로 침하하였고, 최대 침하량은 0.4mm로 측정되었다. Case A의 경우 압축력을 받는 것으로 나타났으며, Case B는 수직하중이 증가함에 따라 말뚝에 압축력과 함께 인장력도 같이 받는 것으로 보이며, Case C는 하중단계가 증가할수록 인장변형이 증가하는 경향을 나타내었다.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.