• Title/Summary/Keyword: Lab-scale test

Search Result 251, Processing Time 0.034 seconds

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

Evaluation of Pilot scale Coagulation system Design for CSOs treatment (CSOs 처리를 위한 실증규모 응집침전시스템의 설계평가)

  • Lee, Seung-Chul;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A pilot scale coagulation system, which has a function of physicochemical treatment, was developed to treat Combined sewer overflows(CSOs). This coagulation system requires evaluation of optimum design factors whether it has reflected those of lab scale system, moreover, the pilot scale system can be evaluated differently according to the characteristics of influent CSOs even though it has reflected lab scale's design factors. We conducted an experiment using lab scale system that could treat $1m^3$ of CSOs in a day, and also pilot-scale system with $100m^3/day$ CSOs flowed into the Cheongju sewage treatment plant. Therefore the aim of this study is to evaluate a hydraulic similarity between the design factors of pilot scale and those of lab scale coagulation system, and to evaluate feasibility of the coagulation system for the CSOs treatment with optimum operation conditions. From the result of pilot-test, we drew the optimum operation factors of in line mixer and flocculator having similarities with those of lab scale system as well as the optimum coagulant dose. Finally we confirmed that the coagulation system has feasibility to treat the CSOs with high removal efficiency.

Analysis of Scaling Factor applied to Lab-Scale Model for Estimating Dynamic Characteristics of Real Structures (실구조물의 동특성 파악을 위한 축소모형에 적용되는 상사비 분석)

  • Park, Gun;Yoon, Hyungchul;Kim, Sung Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • The earthquakes are the natural disasters that can cause the most serious damage to civil structures. Therefore, various studies are being conducted to secure the safety of structures against earthquakes. Most studies on the safety or mechanism of civil structures during earthquakes are being conducted based on lab scale test, because real structure tests are impossible when considering the scale of civil structures. The scaling factor proposed by Iai is mainly cited, but when applying the scaling factor proposed by Iai, there are many difficulties in selecting the structural members necessary for the production of the lab scale model. This is because when applying the scaling factor proposed by Iai, the scaling factor must be applied to the elastic modulus, which is the material property of the structure. Therefore, a new method based on Iai's 's similarity law for determining scale factor is applied in this study where the material property of real structure is same as that of lab-scale model. Through the results of this study, it is considered that the characteristics of the structure calculated through the lab scale model test can more accurately reflect the characteristics of the real structure.

Treatment Efficiency of Non-Point Source Pollutants Using Modified Filtration System (개선된 여과형 시설의 비점오염물질 처리효율 평가)

  • Kang, Hee-Man;Choi, Ji-Yon;Kim, Lee-Hyung;Bae, Woo-Keun
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • The objective of this study was to evaluate the efficiency of a modified filtration system treating non-point source (NPS) pollutants. The developed Best Management Practice (BMP) technology was designed based on the geographical and climatic characteristics of the site. A lab-scale test experiment was conducted using three different hydraulic loading rates representing the first flush flow, average flow and overflow conditions during a rainfall event. Water quality analysis was performed on the water samples taken at the inflow, outflow and infiltration during the test experiment of the lab-scale BMP. Also, the water and mass balance at different hydraulic loading rates was determined. Results from the lab-scale test experiment showed that the lab-scale BMP had a high removal efficiency of 80-90% for all NPS pollutants. The overflow test condition obtained the lowest removal efficiency among the hydraulic loading rates because it gave less opportunity for the pollutants to be filtered and retained inside system. The infiltration ratio was approximately 1 % of the inflow and outflow. Increasing the infiltration ratio requires technical approach of soil amendment where the BMP is installed.

The Effect of SSC(Small-Scale Chemistry) Lab Program on Scientifically Gifted Students' Scientific Attitude, Creative Personality Characteristics and Science Inquiry Skills (SSC(Small-Scale Chemistry)실험이 과학영재의 과학적 태도, 창의적 성격 특성 및 과학탐구 능력에 미치는 효과)

  • Yoo, Mi-Hyun
    • Journal of Gifted/Talented Education
    • /
    • v.20 no.2
    • /
    • pp.487-502
    • /
    • 2010
  • The purpose of this study was to examine the effect of SSC(Small-Scale Chemistry) lab program applying to scientifically gifted students' classes. The participants were 15 the middle school scientifically gifted students selected and enrolled in science-gifted education center of university. SSC lab program was applied for 3 month with 5 topics. The research design was one group pretest-posttest design, the data were analyzed using the PASW 18 statistics program. The results of this study were as follows: First, the scientific attitude of scientifically gifted students was improved significantly(p<.01) after applying SSC lab program. Especially, there were significant difference between pre-test and post-test in the scores of cooperativity, spontaneity, perseverance, which were the sub-region of scientific attitude. Second, the creative personality characteristics of scientifically gifted students showed statistically significant improvements(p<.01) after applying SSC lab program. Especially, there was significant difference between pre-test and post-test in the scores of adhesion, which was a sub-region of the creative personality characteristics. Third, there were no significant differences in the science inquiry skills between before and after applying the SSC lab program in the scientifically gifted students' classes(p>.05). The results suggest that SSC Lab program is an effective program in scientifically gifted students' classes.

Verification of Structural Integrity for Cylindrical Subsonic Vehicle (원통형 아음속 비행체 구조 건전성 확인)

  • Choi, Youn Gyu;Noh, Kyung-Ho;Gil, Geun Suk;Jeon, Jong Geun;Baek, Joo Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • In this paper, the structural integrity for a cylindrical vehicle in subsonic environments is verified. In order to confirm static structural safety for the cylindrical vehicle in extreme maneuver condition, the structure analysis and full-scale static structure test are carried out. The commercial finite element codes, MSC. Patran/Nastran is used for numerical simulation. The full-scale static structure test equipment consists of the counterbalance system, loading system and data acquisition system. Besides, the dynamic characteristics for the cylindrical vehicle are reviewed by performing an impact hammer test.

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Evaluation of High-Temperature Structural Integrity Using Lab-Scale PCHE Prototype (SUS316L 로 제작된 실험실 수준 인쇄기판형 열교환기 시제품의 고온구조건전성 평가)

  • Song, Kee Nam;Hong, Sung Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1189-1194
    • /
    • 2013
  • The Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR) is a core component that transfers the high heat of $950^{\circ}C$ generated in the VHTR to a hydrogen production plant. The Korea Atomic Energy Research Institute manufactured a lab-scale prototype of a Printed Circuit Heat Exchanger (PCHE) as a candidate for an IHX. In this study, as a part of a high-temperature structural integrity evaluation of the lab-scale PCHE prototype made of SUS316L, we carried out high temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the lab-scale PCHE prototype under helium experimental loop (HELP) test conditions as a precedent study prior to the performance test in HELP.

Development of a Seismic Test Method for Fire Protecting Components by Equivalent Linear Analysis Theory (등가선형해석이론에 의한 소방설비 구성품의 Lab scale 내진성능평가기법 개발)

  • Kwark, Ji-Hyun;Yoon, Jong-Ku
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • In this study a lab scale seismic test method which is able to evaluate seismic resistant performance of the fire protecting components in case of earthquake was developed. This seismic test consists of equivalent accelerating and temporary accelerating. The former is to search for resonance frequency and the latter is to simulate vibrating by earthquake with intensive magnitude. The frequency and displacement accelerated to the components was decided by maximum acceleration of gravity, and whether or not they could maintain function was tried to be confirmed. This test method is expected as an effective one for evaluating seismic resistant performance for the fire protecting components.