• 제목/요약/키워드: Lab-Scale Model

검색결과 172건 처리시간 0.028초

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

T-START: Time, Status and Region Aware Taxi Mobility Model for Metropolis

  • Wang, Haiquan;Lei, Shuo;Wu, Binglin;Li, Yilin;Du, Bowen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3018-3040
    • /
    • 2018
  • The mobility model is one of the most important factors that impacts the evaluation of any transportation vehicular networking protocols via simulations. However, to obtain a realistic mobility model in the dynamic urban environment is a very challenging task. Several studies extract mobility models from large-scale real data sets (mostly taxi GPS data) in recent years, but they do not consider the statuses of taxi, which is an important factor affected taxi's mobility. In this paper, we discover three simple observations related to the taxi statuses via mining of real taxi trajectories: (1) the behavior of taxi will be influenced by the statuses, (2) the macroscopic movement is related with different geographic features in corresponding status, and (3) the taxi load/drop events are varied with time period. Based on these three observations, a novel taxi mobility model (T-START) is proposed with respect to taxi statuses, geographic region and time period. The simulation results illustrate that proposed mobility model has a good approximation with reality in trajectory samples and distribution of nodes in four typical time periods.

가스분석을 이용한 석탄 종류별 $CO_2$ 가스화 반응특성 연구 (Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis)

  • 김용택;서동균;황정호
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.41-49
    • /
    • 2010
  • Various coals from many countries around the world have been used for pulverized coal boiler in power plants in Korea. In this study, the gasification reactivities of various coal chars with $CO_2$ were investigated. Carbon conversion was measured using a real time gas analyzer with NDIR CO/$CO_2$ sensor. In a lab scale furnace, each coal sample was devolatilized at $950^{\circ}C$ in nitrogen atmosphere and became coal char and then further heated up to reach to a desired temperature. Each char was then gasified with $CO_2$ under isothermal conditions. The reactivities of coal chars were investigated at different temperatures. The shrinking core model (SCM) and volume reaction model(VRM) were used to interpret the experiment data. It was found that the SCM and VRM could describe well the experimental results within the carbon conversion of 0-0.98. The gasification rates for various coals were very different. The gasification rate for any coal increased as the volatile matter content increased.

Exploring Flow Characteristics in IPv6: A Comparative Measurement Study with IPv4 for Traffic Monitoring

  • Li, Qiang;Qin, Tao;Guan, Xiaohong;Zheng, Qinghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1307-1323
    • /
    • 2014
  • With the exhaustion of global IPv4 addresses, IPv6 technologies have attracted increasing attentions, and have been deployed widely. Meanwhile, new applications running over IPv6 networks will change the traditional traffic characteristics obtained from IPv4 networks. Traditional models obtained from IPv4 cannot be used for IPv6 network monitoring directly and there is a need to investigate those changes. In this paper, we explore the flow features of IPv6 traffic and compare its difference with that of IPv4 traffic from flow level. Firstly, we analyze the differences of the general flow statistical characteristics and users' behavior between IPv4 and IPv6 networks. We find that there are more elephant flows in IPv6, which is critical for traffic engineering. Secondly, we find that there exist many one-way flows both in the IPv4 and IPv6 traffic, which are important information sources for abnormal behavior detection. Finally, in light of the challenges of analyzing massive data of large-scale network monitoring, we propose a group flow model which can greatly reduce the number of flows while capturing the primary traffic features, and perform a comparative measurement analysis of group users' behavior dynamic characteristics. We find there are less sharp changes caused by abnormity compared with IPv4, which shows there are less large-scale malicious activities in IPv6 currently. All the evaluation experiments are carried out based on the traffic traces collected from the Northwest Regional Center of CERNET (China Education and Research Network), and the results reveal the detailed flow characteristics of IPv6, which are useful for traffic management and anomaly detection in IPv6.

Elastic shell model: Effect of Young's Modulus on the vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.471-479
    • /
    • 2022
  • In this paper, vibrational attributes of double-walled carbon nanotubes (CNTs) has been studied based upon nonlocal elastic shell theory. The implication of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. The comparison of local and nonlocal model has been overtly explored by means of scaling parameter. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Young's modulus has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

개량된 TDR센서를 이용한 대형 모형제방의 침투 해석 (Seepage Analysis of Large-Scale Embankment Model by Revised TDR Sensor)

  • 박민철;이종욱;김유석;한희수
    • 한국지반공학회논문집
    • /
    • 제28권11호
    • /
    • pp.53-67
    • /
    • 2012
  • 본 논문에서는 기존에 사용되던 철선 TDR계측선의 문제점을 해결하기 위해 스테인리스 스틸과 열수축튜브를 이용해 개량된 TDR계측선을 개발하여, 함수비에 대한 민감도를 높이고 노이즈를 줄이며 내구성을 향상시켜 TDR시스템의 현장적용성을 높였다. 개량된 TDR계측선을 이용하여 실내에서 포화도 변화실험과 아크릴모형실험을 수행하였으며, 실험결과 별도의 필터링 및 정량화 과정을 거치지 않은 초기 계측 그래프만으로 쉽게 포화, 불포화 및 건조구간을 파악할 수 있었다. 이후 대형 모형제방에 개량된 TDR센서를 설치하여 침투실험을 수행하였으며 그 결과, 실내시험과 같은 명확한 지하수 분포형태 파악이 가능하였으며, 침투 시간경과에 따른 각 구간의 지하수 분포변화를 파악할 수 있었고 손쉽게 모형제방의 침윤선을 작도할 수 있었다.

첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계 (Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design)

  • 허성구;정찬혁;이나희;심예림;우태용;김정인;유창규
    • 청정기술
    • /
    • 제28권1호
    • /
    • pp.79-93
    • /
    • 2022
  • 본 연구에서는 Part I에서 제안한 첨단 전자산업 폐수처리시설 특화 Water Digital Twin모델인 e-ASM을 이용하여 랩-파일럿 처리장 데이터를 바탕으로 모델 보정(Calibration), 유입 성상에 따른 제거 효율, 유출수 예측 및 최적 공법 선정을 수행하였다. 첨단 전자산업 폐수처리시설의 특화 모델링을 위하여, 민감도 분석을 통해 e-ASM 모델의 정합성과 상관성이 높은 동역학적 파라미터를 선정하였고, 다중반응표면분석법 (Multiple response surface methodology, MRS)을 이용하여 동역학적 파라미터를 보정하였다. e-ASM 모델의 보정 결과, Lab-scale, Pilot-scale 단위의 실험데이터와 90% 이상의 높은 정합성을 보였다. 그리고 4가지 유기폐수 처리처리공법인 MLE, A2/O, 4-stage MLE-MBR, Bardenpho-MBR을 제안한 Water Digital Twin으로 구현하여 유입 폐수의 성상별 운전조건에 따라 제거효율을 분석하였으며, Bardenpho-MBR이 C/N ratio 변화에서도 안정적으로 COD (Chemical oxygen demand)를 90% 이상 제거하며 높은 총 질소 제거 효율을 보였다. 그리고 유입 폐수의 조건별 Bardenpho-MBR공정의 수리학적 체류시간(Hydraulic retention time, HRT)이 3일 이상일 때 1,800 mg L-1의 고농도 TMAH 폐수를 98% 이상 제거할 수 있음을 확인할 수 있었다. 이와 같이, 본 연구에서 개발한 e-ASM은 전자산업 제조시설별, 유입 폐수의 성상별 특화 모델링을 통해 높은 정합성을 가진 전자산업 폐수처리공정의 Water Digital Twin를 구현할 수 있고, 최적운전, Water AI, 최적가용기법 선정 등의 응용 가능성을 바탕으로 지속 가능한 첨단전자 산업을 위해 활용될 수 있을 것으로 사료된다.

소프라노 1인의 모음곡 발성 시 제 1 포먼트의 변화양상 (The First Formant Characteristics in Vocalize of One Soprano)

  • 송윤경;진성민
    • 대한후두음성언어의학회지
    • /
    • 제16권1호
    • /
    • pp.10-14
    • /
    • 2005
  • Background and Objectives : Vowels are characterized on the basis of formant patterns. The first formant(F1) is determined by high-low placement of the tongue, and the second formant (F2) by front-back placement of the tongue. The fundamental frequency(F0) of a soprano often exceed the normal frequency of the first formant. And the vocal intensity is boosted when F0 is high and a harmonic coincides with a formant. This is called a formant tuning. Experienced singers thus learned how to tune their formants over a resonable range by lowering the tongue to maximize their vocal intensity. So, the current study aimed to identify the formant tuning in one experienced soprano by comparing the first formants of vowel [i] in three different voice production : speech, ascending scale, and vocalize. Materials and Method : All voices recordings of vowel [i] in speech, ascending scale (from F4 note to A4 note), and vocalize(:Ridente la calam") were made with digital audio tape-corder in a sound treated room. And the captured data were analyzed by the long term average(LTA) power spectrum using the FFT algorithm of the Computerized Speech Lab(CSL, Kay elementrics, Model, 4300B). Results : Although the first formant of vowel [i] in speech was 238Hz, those of ascending scale [i] were 377Hz, 405Hz, 453Hz respectively in F4(349z), G4(392Hz), A4(440Hz) note, and 722Hz, 820Hz, 918Hz respectively in F5 (698Hz), G5(784Hz), A5(880Hz) note. In vocalize, first formants of [i] were 380Hz, 398Hz, 453Hz respectively in F4, G4, A4 note, and 720Hz, 821Hz, 890Hz respectively in F5, G5, A5 note. Conclusion : These results showed that the first formant of ascending scale and vocalize sustained higher frequency than fundamental frequency in high pitch. This finding implicates that the formant tuning of vowel [i] in ascending scale was also noted in vocalize.

  • PDF

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.