• Title/Summary/Keyword: LYSO Scintillation crystal

Search Result 4, Processing Time 0.023 seconds

Optimized TOF-PET detector using scintillation crystal array for brain imaging

  • Leem, Hyuntae;Choi, Yong;Jung, Jiwoong;Park, Kuntai;Kim, Yeonkyeong;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2592-2598
    • /
    • 2022
  • Research groups in the field of PET instrumentation are studying time-of-flight(TOF) technology to improve the signal-to-noise ratio of PET images. Scintillation light transport and collection plays an important role in improving the coincidence resolving time(CRT) of PET detector based on a pixelated crystal array. Four crystal arrays were designed by the different optical reflection configuration such as external reflectors and surface treatment on the CRT and compared with the light output, energy resolution and CRT. The design proposed in the study was composed of 8 × 8 LYSO crystal array consisted of 3 × 3 × 15 mm3 pixels. The entrance side was roughened while the other five surfaces were polished. Four sides of all crystal pixels were wrapped with ESR-film, and the entrance surface was covered by Teflon-tape. The design provided an excellent timing resolution of 210 ps and improved the CRT by 16% compared to the conventional method using a polishing treatment and ESR-film. This study provided a method for improving the light output and CRT of a pixelated scintillation crystal-based brain TOF PET detector. The proposed configuration might be an attractive detector design for TOF brain PET requiring fast timing performance with high cost-effectiveness.

Feasibility study of SiPM based scintillation detector for dual-energy X-ray absorptiometry

  • Park, Chanwoo;Song, Hankyeol;Joung, Jinhun;Kim, Yongkwon;Kim, Kyu Bom;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2346-2352
    • /
    • 2020
  • Dual-energy x-ray absorptiometry (DXA) is the noninvasive method to diagnose osteoporosis disease characterized by low bone mass and deterioration of bone tissue. Many global companies and research groups have developed the various DXA detectors using a direct photon-counting detector such as a cadmium zinc telluride (CZT) sensor. However, this approach using CZT sensor has some drawback such as the limitation of scalability by high cost and the loss of efficiency due to the requirement of a thin detector. In this study, a SiPM based DXA system was developed and its performance evaluated experimentally. The DXA detector was composed of a SiPM sensor coupled with a single LYSO scintillation crystal (3 × 3 × 2 ㎣). The prototype DXA detector was mounted on the dedicated front-end circuit consisting of a voltage-sensitive preamplifier, pulse shaping amplifier and constant fraction discriminator (CFD) circuit. The SiPM based DXA detector showed the 34% (at 59 keV) energy resolution with good BMD accuracy. The proposed SiPM based DXA detector showed the performance comparable to the conventional DXA detector based on CZT.

Spectroscopic Properties of a Silicon Photomultiplier-based Ce:GAGG Scintillation Detector and Its Applicability for γ-ray Spectroscopy (감마선 분광분석을 위한 실리콘 광 증배소자 기반 Ce:GAGG 섬광검출기의 분광특성 연구)

  • Park, Hye Min;Kim, Jeong Ho;Kim, Dong Seong;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • In this study, a scintillation detector was fabricated using a silicon photomultiplier (SiPM) and a Ce:GAGG scintillator single crystal, and its spectroscopic properties were compared with those of commercially available LYSO and CsI:Tl scintillators using ${\gamma}$-ray spectroscopy. The energy resolutions of the self-produced scintillation detector composed of the scintillator single crystal (volume: $3{\times}3{\times}20mm^3$) and SiPM (Photosensitive area: $3{\times}3mm^2$) for standard ${\gamma}$-ray sources, such as $^{133}Ba$, $^{22}Na$, $^{137}Cs$ and $^{60}Co$ were measured and compared. As a result, the energy resolutions of the proposed Ce:GAGG scintillation detector for g-rays, as measured using its spectroscopic properties, were found to be 13.5% for $^{133}Ba$ 0.356 MeV, 6.9% for $^{22}Na$ 0.511 MeV, 5.8% for $^{137}Cs$ 0.662 MeV and 2.3% for $^{60}Co$ 1.33 MeV.

Effect of Detector-Misalignment on TOF-PET Detector Performance (검출기 정렬 오차가 TOF-PET 검출기의 성능에 미치는 영향성 평가)

  • Yang, Jingyu;Kang, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.841-846
    • /
    • 2019
  • Effect of misalignment on the performance was evaluated for the development of time-of-flight(TOF)-PET detector. A pair of TOF-PET detector consists of Lutetium-yttrium oxyorthosilicate(LYSO) scintillation crystal with a volume of 3 mm × 3 mm × 20 mm and Geiger-mode avalanche photodiodes(GAPD) photo-sensor with a active area of 3.07 mm × 3.07 mm. Analog output signals from TOF-PET detector were sent to the pre-amplifier and then fed into the gain adjust circuit for achievement of gain homogeneity for each detector. The amplified signals were recorded and digitized by data acquisition system based on oscilloscope. The effect of the detector misalignment between LYSO and GAPD was examined for four different alignment offsets of 0.0 mm, 0.5 mm, 1.0 mm and 1.5 mm for a pair of TOF-PET detector. The photopeak position decreased from ~400 mV to ~250 mV with increasing detector misalignment. the energy resolution and time resolution were degraded from 11.6% to 16.2%, and from 477 ps to 632 ps, respectively. This study demonstrated that PET detector performance was degraded considerably depending on the detector misalignment, which would be a critical issue for the development of TOF-PET detector.