• Title/Summary/Keyword: LYAPUNOV EXPONENT

Search Result 135, Processing Time 0.02 seconds

The Immediate Effect of Electroacupuncture at the B62(Shinmaek) K6(Chohae) on the EEG of Vascular Dementia (신맥 조해의 전침자극이 치매환자의 뇌파에 미치는 영향)

  • Park, Woo-Soon;Lee, Tae-Young;Kim, Soo-Yong;Lee, Kwang-Gyu;Yuk, Sang-Won;Lee, Chang-Hyun;Lee, Sang-Ryong
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.67-78
    • /
    • 2001
  • The aim of this study was to examine the effects of low frequency electroacupuncture(EA) at the $B_{62}$ (Shinmaek) $K_6$(Chohae) on vascular dementia in humans using nonlinear dynamics. Electroencephalogram(EEG) is a multi-scaled signal consisting of several components of time series with different dominant frequency ranges and different origins. Nonlinear measures of the EEG like the correlation dimension ($D_2$) and the first positive Lyapunov exponent ($L_1$) reflect the complexity of the EEG. In this study, $D_2$ was used as a measure of complexity. Sixteen channel EEG study was carried out in six subjects (5 females and 1 males; $age=83.83{\pm}7.19years$). We found that the baseline $D_2$ values of the EEG at F4 and F8 channels (P<0.01) were lowered than during the acupuncture treatment, indicating decreased complexity of the EEG. However, the comparison with that before and after the treatment shows no significant differences in all channels.

  • PDF

Integrated Circuit Implementation and Characteristic Analysis of a CMOS Chaotic Neuron for Chaotic Neural Networks (카오스 신경망을 위한 CMOS 혼돈 뉴런의 집적회로 구현 및 특성 해석)

  • Song, Han-Jeong;Gwak, Gye-Dal
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.45-53
    • /
    • 2000
  • This paper presents an analysis of the dynamical behavor in the chaotic neuron fabricated using 0.8${\mu}{\textrm}{m}$ single poly CMOS technology. An approximated empirical equation models for the sigmoid output function and chaos generative block of the chaotic neuron are extracted from the measurement data. Then the dynamical responses of the chaotic neuron such as biurcation diagram, frequency responses, Lyapunov exponent, and average firing rate are calculated with numerical analysis. In addition, we construct the chaotic neural networks which are composed of two chaotic neurons with four synapses and obtain bifurcation diagram according to synaptic weight variation. And results of experiments in the single chaotic neuron and chaotic neural networks by two neurons with the $\pm$2.5V power supply and sampling clock frequency of 10KHz are shown and compared with the simulated results.

  • PDF

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.

Walkability Evaluation for Elderly People using Wearable Sensing (웨어러블 센싱 기반 고령자를 위한 보행 편의성 평가)

  • Yang, Kanghyeok;Hwang, Sungjoo;Kim, Hyunsoo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.7
    • /
    • pp.119-126
    • /
    • 2019
  • The active living of the elderly leads to improve their lives and enhance social networks. In the view of the active living, the walkability is an essential factor for the elderly's daily life. To support the active living, making age-friendly environment is important. Considering that the elderly mainly carry out activities through walking, making the age-friendly walking environment is a preliminary action. The existing studies applied various methods such as surveys by experts. In spite of the benefits in theirs, there is still a limitation that current walkability measurement methods did not incorporate the actual elderly's walking activity. Thus, the purposes of this study is to measure the elderly's walking quantitatively using a wearable sensor, and to investigate the feasibility of comparing several walking environments based on the data collected from the actual elderly's walking. To do this, experiment was conducted in four types environments with 22 senior subjects. The walkability was measured by walking stability represented quantitatively as Maximum Lyapunov Exponent (MaxLE). Through the experiment results, it was confirmed that the stability of the elderly walking was different according to the walking environment, which also meant that bodily responses (walking stability) is highly related to walkability. The results will provide an opportunity for the continuous diagnosis of walking environments, thereby enhancing the active living of the elderly.

A Study on the Nonlinear Deterministic Characteristics of Stock Returns (주식 수익률의 비선형 결정론적 특성에 관한 연구)

  • Chang, Kyung-Chun;Kim, Hyun-Seok
    • The Korean Journal of Financial Management
    • /
    • v.21 no.1
    • /
    • pp.149-181
    • /
    • 2004
  • In this study we perform empirical tests using KOSPI return to investigate the existence of nonlinear characteristics in the generating process of stock returns. There are three categories in empirical tests; the test of nonlinear dependence, nonlinear stochastic process and nonlinear deterministic chaos. According to the analysis of nonlinearity, stock returns are not normally distributed but leptokurtic, and appear to have nonlinear dependence. And it's decided that the nonlinear structure of stock returns can not be completely explained using nonlinear stochastic models of ARCH-type. Nonlinear deterministic chaos system is the feedback system, which the past incidents influence the present, and it is the fractal structure with self-similarity and has the sensitive dependence on initial conditions. To summarize the results of chaos analysis for KOSPI return, it is the persistent time series, which is not IID and has long memory, takes biased random walk, and is estimated to be fractal distribution. Also correlation dimension, as the approximation of fractal dimension, converged stably within 3 and 4, and maximum Lyapunov exponent has positive value. This suggests that chaotic attractor and the sensitive dependence on initial conditions exist in stock returns. These results fit into the characteristics of chaos system. Therefore it's decided that the generating process of stock returns has nonlinear deterministic structure and follow chaotic process.

  • PDF