• 제목/요약/키워드: LVRT requirement

검색결과 4건 처리시간 0.023초

풍력발전연계 전력계통의 성능평가를 위한 국내 풍력발전기 LVRT 전사모델 개발 (Simulation Model Development of Korean LVRT capability for evaluating the WTG-interconnected Power Systems Performance)

  • 한준범;손혁진;국경수
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1814-1821
    • /
    • 2012
  • 본 논문은 국내에서 설비용량 20MW 이상의 신재생발전기에 대해 계통연계 유지조건을 의무화하는 송배전용 전기설비 이용규정이 2012년부터 적용됨에 따라 이를 모의해석 기반의 풍력발전기 계통연계 검토 시에 고려하기 위한 풍력발전기의 LVRT(Low Voltage Ride Through) 전사모형을 개발하고 이를 풍력발전기가 연계된 전력계통의 성능평가에 적용하여 전사모델의 유용성을 검증한 후 전력계통의 대표적인 상정고장에 적용하여 국내 풍력발전기 계통연계 유지조건의 적용효과를 분석하였다.

전력 HILs를 활용한 스마트 인버터의 LVRT 시험 (Low Voltage Ride Through Test for Smart Inverter in Power Hardware in Loop System)

  • Sim, Junbo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.101-105
    • /
    • 2021
  • Encouragement of DER from Korean government with several policies boosts DER installation in power system. When the penetration of DER in the grid is getting high, loss of generation with break-away of DER by abnormal grid conditions should be considered, because loss of high generation causes abnormal low frequency and additional operations of protection system. Therefore, KEPCO where is Korean power utility is preparing improvement in regulations for DERs connected to the grid to support abnormal grid conditions such as low and high frequencies or voltages. This is called 'Ride Through' because the requirement is for DER to maintain grid connection during required periods when abnormal grid conditions occur. However, it is not easy to have a test for ride through capability in reality because emulation of abnormal grid conditions is not possible in real power system in operation. Also, it is not easy to have a study on grid effect when ride through capability fails with the same reason. PHILs (Power Hardware In the Loop System) makes it possible to analyze power system and hardware performance at once. Therefore, this paper introduces PHILs test methods and presents verification of ride through capability especially for low voltage grid conditions.

전원사고 시 3상 계통연계 인버터의 전원 전압 고속 검출 방법 (High Speed Grid Voltage Detection Method for 3 Phase Grid-Connected Inverter during Grid Faults)

  • 최형진;송승호;정승기;최주엽;최익
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.65-72
    • /
    • 2009
  • The new method is proposed to improve high speed detection of grid voltage phase and magnitude during a voltage dip due to a grid faults. Usually, A LPF(Low Pass Filter) is used in the feedback loop of PLL (Phase Locked Loop) system because the measured grid voltage contains harmonic distortions and sensor noises. so, a new design method of the loop gain of the PI -type controller in the PLL system is proposed with the consideration of the dynamics of the LPF. As a result, a better transient response can be obtained with the proposed design method. The LPF frequency and PI controller gain are designed in coordination according to the steady state and dynamic performance requirement. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the lab-scale experiments.

Fault Response of a DFIG-based Offshore Wind Power Plant Taking into Account the Wake Effect

  • Kim, Jinho;Lee, Jinsik;Suh, Yongsug;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.827-834
    • /
    • 2014
  • In order to meet the low voltage ride-through requirement in a grid code, a wind power plant (WPP) has to stay connected to a grid, supporting the voltage recovery for a grid fault. To do this, a plant-level controller as well as a wind generator (WG) controller is essential. The dynamic response of a WPP should be analyzed in order to design a plant-level controller. The dynamic response of a WPP for a grid fault is the collective response of all WGs, which depends on the wind speed approaching the WG. Thus, the dynamic response of a WPP should be analyzed by taking the wake effect into consideration, because different wind speeds at WGs will result in different responses of the WPP. This paper analyzes the response of a doubly fed induction generator (DFIG)-based offshore WPP with a grid fault taking into account the wake effect. To obtain the approaching wind speed of a WG in a WPP, we considered the cumulative impact of multiple shadowing and the effect of the wind direction. The voltage, reactive power, and active power at the point of common coupling of a 100 MW DFIG-based offshore WPP were analyzed during and after a grid fault under various wind and fault conditions using an EMTP-RV simulator. The results clearly demonstrate that not considering the wake effect leads to significantly different results, particularly for the reactive power and active power, which could potentially lead to incorrect conclusions and / or control schemes for a WPP.