• Title/Summary/Keyword: LVQ

Search Result 107, Processing Time 0.026 seconds

Classification of Consonants by SOM and LVQ (SOM과 LVQ에 의한 자음의 분류)

  • Lee, Chai-Bong;Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • In an effort to the practical realization of phonetic typewriter, we concentrate on the classification of consonants in this paper. Since many of consonants do not show periodic behavior in time domain and thus the validity for Fourier analysis of them are not convincing, vector quantization (VQ) via LBG clustering is first performed to check if the feature vectors of MFCC and LPCC are ever meaningful for consonants. Experimental results of VQ showed that it's not easy to draw a clear-cut conclusion as to the validity of Fourier analysis for consonants. For classification purpose, two kinds of neural networks are employed in our study: self organizing map (SOM) and learning vector quantization (LVQ). Results from SOM revealed that some pairs of phonemes are not resolved. Though LVQ is free from this difficulty inherently, the classification accuracy was found to be low. This suggests that, as long as consonant classification by LVQ is concerned, other types of feature vectors than MFCC should be deployed in parallel. However, the combination of MFCC/LVQ was not found to be inferior to the classification of phonemes by language-moded based approach. In all of our work, LPCC worked worse than MFCC.

3 Steps LVQ Learning Algorithm using Forward C.P. Net. (Forward C-P. Net.을 이용한 3단 LVQ 학습알고리즘)

  • Lee Yong-gu;Choi Woo-seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.33-39
    • /
    • 2004
  • In this paper. we design the learning algorithm of LVQ which is used Forward Counter Propagation Networks to improve classification performance of LVQ networks. The weights of Forward Counter Propagation Networks which is between input layer and cluster layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm. Finally. pattern vectors is classified into subclasses by neurons which is being in the cluster layer, and the weights of Forward Counter Propagation Networks which is between cluster layer and output layer is learned to classify the classified subclass, which is enclosed a class. Also. kr the number of classes is determined, the number of neurons which is being in the input layer, cluster layer and output layer can be determined. To prove the performance of the proposed learning algorithm. the simulation is performed by using training vectors and test vectors that ate Fisher's Iris data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.

  • PDF

LVQ network for a face image recognition of the 3D (3D 얼굴 영상 인식을 위한 LVQ 네트워크)

  • 김영렬;박진성;임성진;이용구;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.151-154
    • /
    • 2003
  • In this paper, we propose a method to recognize a face image of the 3D using the LVQ network. LVQ network of the proposed method, We used the front view of a face image to get to a coded light to a training data, can group a face image including the side of various angle. For an usefulness authentication of this algorithm, Various experiment which classifies a face image of the angle was the low.

  • PDF

Quantization of Line Spectrum Pair Frequencies using Lattice Vector Quantizers (격자벡터양자화기를 이용한 음성신호의 LSP 주파수 양자화)

  • 강정원;정재호;정대권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2634-2644
    • /
    • 1996
  • Two different low rate speech coders using one of four types of lattice vector quantizers(LVQ's) with fairly low complexity were investigated for an application to mobile communications. More specifically, two-stage vector quantizer-lattic vector quantizer(VQ-LVQ) systems and vector differenctial pulse code modulation(VDPCM)systems with lattice vector quantizers simulated to encode the line spectrum frequencies of various sentences at the rate 22 to 39 bits per 20 msec frame. The simulation results showed that the VDPCM system with the lattice VQ can save up to 10 bits/fram compared to the quantization scheme used in QCELP system. For the VQ-LVQ system, the spherical quasi-uniform LVQ below 36 bits/frame outperformed the other 3 types of LVQ's and the pyramidal quasi-uniform LVQ at 37 bits/frame outperformed the other 3 types of LVQ's with the spectral distortion 0.97.

  • PDF

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

Pattern Classification Model using LVQ Optimized by Fuzzy Membership Function (퍼지 멤버쉽 함수로 최적화된 LVQ를 이용한 패턴 분류 모델)

  • Kim, Do-Tlyeon;Kang, Min-Kyeong;Cha, Eui-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.573-583
    • /
    • 2002
  • Pattern recognition process is made up of the feature extraction in the pre-processing, the pattern clustering by training and the recognition process. This paper presents the F-LVQ (Fuzzy Learning Vector Quantization) pattern classification model which is optimized by the fuzzy membership function for the OCR(Optical Character Recognition) system. We trained 220 numeric patterns of 22 Hangul and English fonts and tested 4840 patterns whose forms are changed variously. As a result of this experiment, it is proved that the proposed model is more effective and robust than other typical LVQ models.

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Learning Networks for Learning the Pattern Vectors causing Classification Error (분류오차유발 패턴벡터 학습을 위한 학습네트워크)

  • Lee Yong-Gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.77-86
    • /
    • 2005
  • In this paper, we designed a learning algorithm of LVQ that extracts classification errors and learns ones and improves classification performance. The proposed LVQ learning algorithm is the learning Networks which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVQ. To extract pattern vectors which cause classification errors, we proposed the error-cause condition, which uses that condition and constructed the pattern vector space which consists of the input pattern vectors that cause the classification errors and learned these pattern vectors , and improved performance of the pattern classification. To prove the performance of the proposed learning algorithm, the simulation is performed by using training vectors and test vectors that are Fisher' Iris data and EMG data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.

  • PDF

Optimal Design of LVQ Network using the Winning Expectation of Output Neurons of SOM (SOM의 출력 뉴런의 승리 기대값을 이용한 LVQ 네트워크의 최적 설계)

  • 정경권;엄기환;이용구;손동설
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1267-1270
    • /
    • 2003
  • In this paper, we propose a optimal design method of the LVQ network. The proposed method determines the initial reference vectors and optimal network structure using the winning expectation of output neurons of SOM. In order to verify the effectiveness of the proposed method, we performed experiments on the Fisher's IRIS data. The experimental results showed that the proposed method improves considerably on the performance of the conventional LVQ networks.

  • PDF

Adaptive LVQ Intelligent System for Perimeter Condition (주변 상황에 적응하는 LVQ 지능 시스템)

  • 엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.627-638
    • /
    • 1999
  • In this paper, the system with an artificial intelligent that is able itself to adjust the perimeter condition of the plant is presented. The proposed intelligent system is composed of two learning vector quantization(LVQ) networks, which are used mostly in the field of the pattern recognition and signal processing. From the external condition of the plant, the first LVQ network recognizes the pattern of the sensed signal and the second LVQ network judges synthetically user's characteristics and performs learning. The controller controls the plant using the reference value, which is the output value of the synthetic judgement part. In order to verify the usefulness of the proposed method, we simulated the two LVQs are implemented for the artificial intelligent illuminator as well as being carried out computer simulations. We implemented the proposed artificial intelligent illuminator and perform the experiment.

  • PDF