• 제목/요약/키워드: LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme

검색결과 3건 처리시간 0.015초

Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

  • Jang, Keun-Jin;Kim, Jong-Kwan;Cho, Deok-Rae;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.112-121
    • /
    • 2013
  • An approach for composing a performance optimized computational code is suggested for the latest microprocessors. The concept of the code optimization, termed localization, is maximizing the utilization of the second level cache that is common to all the latest computer systems, and minimizing the access to system main memory. In this study, the localized optimization of the LU-SGS (Lower-Upper Symmetric Gauss-Seidel) code for the solution of fluid dynamic equations was carried out in three different levels and tested for several different microprocessor architectures widely used these days. The test results of localized optimization showed a remarkable performance gain of more than two times faster solution than the baseline algorithm for producing exactly the same solution on the same computer system.

최신 마이크로프로세서에서 2차 캐쉬 적중률 증가를 고려한 LU-SGS 코드의 가속 (Acceleration of LU-SGS Code on Latest Microprocessors Considering the Increase of Level 2 Cache Hit-Rate)

  • 최정열;오세종
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.68-80
    • /
    • 2002
  • 최신 마이크로프로세서에서 성능 최적화된 수치 코드를 작성하는 접근법을 제시하였다. 국소화로 지칭한 이 코드 최적화 방법은 모든 최신 마이크로프로세서에서 채용되는 2차 캐시의 사용을 최대화하고 시스템의 주기억장치에 대한 접근을 최소화하는 개념이다. 본 연구에서는 유체역학 문제의 해결을 위한 LU-SGS 해법을 3 단계에 걸쳐 국소화 하였으며, 요즈음 널리 이용되고 있는 여러 가지 마이크로프로세서들에 대해 시험을 수행하였다. 국소 최적화 개념의 시험 결과는, 컴퓨터 시스템에 따라서는, 같은 컴퓨터에서 완전히 동일한 해를 기본 알고리즘에 비해 7.35배까지 빨리 얻을 수 있는 주목할 만한 성능을 보여 주었다.

평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석 (Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation)

  • 신재렬;최정열;최환석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF