• Title/Summary/Keyword: LTE UE

Search Result 53, Processing Time 0.028 seconds

The Partial Full Duplex Relay Scheme for Cell ID Detection of Type 1 Relay in 3GPP LTE-Advanced System (3GPP LTE-Advanced 시스템에서 Type 1 relay의 셀 ID 검출을 위한 부분 전이중 relay 기법)

  • Min, Young-Il;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.558-567
    • /
    • 2011
  • In this paper, we propose a partial full duplex relay scheme for 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution)-Advanced system using a Type 1 relay. The Type 1 relay as inband relay is prohibited to transmit and receive simultaneously because of self-interference. Therefore, the Type 1 relay cannot receive synchronization signals which are transmitted to eNB. To overcoming this problem, we propose the partial full duplex relay scheme which transmits to R-UE (Relay-User Equipment) and receives from eNB (evolved NodeB) simultaneously when eNB and the Type 1 relay transmit subframes which have synchronization signals. Additionally, for solving self-interference, the Type 1 relay transmitter and receiver antennas are sufficiently sufficiently isolated and self-interference cancellation is applied for the self-interference signal from the relay transmitter. Thus, the partial full duplex relay scheme can receive synchronization signals from eNB and solve the problems of conventional solutions and we propose the partial channel estimation scheme for partial full duplex relay scheme using SCI. By extensive computer simulation, we verify that the partial full duplex relay scheme is attractive and suitable for the Type 1 relay system.

Novel User Offloading Scheme for Small Cell Enhancement in LTE-Advanced System (LTE-Advanced 시스템에서 소형셀 향상을 위한 새로운 사용자 오프로딩 기법)

  • Moon, Sangmi;Chu, Myeonghun;Lee, Jihye;Kwon, Soonho;Kim, Hanjong;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.19-24
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A), small cell enhancement(SCE) has been developed as a cost-effective way of supporting exponentially increasing demand of wireless data services and satisfying the user quality of service(QoS). However, due to the dense and irregular distribution of a large number of small cells, the offloading scheme should be applied in the small cell network. In this paper, we propose an user offloading scheme for SCE in LTE-Advanced system. We divide the small cells into different clusters according to the reference signal received power(RSRP) from user equipment(UE). Within a cluster, We apply the user offloading scheme with the consideration of the number of users and interference conditions. Simulation results show that proposed scheme can improve the throughput, and spectral efficiency of small cell users. Eventually, proposed scheme can improve overall cell performance.

Spectral Efficiency Evaluation of Coordinated Multi-point Systems Based on System Level Simulations (멀티 포인트 시스템에서 시스템 레벨 시뮬레이션에 기반을 둔 스펙트럼 효율성 검증)

  • Jung, Bang-Chul;Shin, Won-Yong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2113-2120
    • /
    • 2011
  • In this paper, so as to improve spectral efficiency for cell-boundary users, we introduce a coordinated multi-point (CoMP) system, which is one of inter-cell cooperative transmission strategies studied in 3GPP long-term evolution-advanced (LTE-A) systems, and develop a system-level simulator to evaluate performance. To identify performance improvement of the system with inter-cell cooperative transmission, we select a 3GPP LTE system as a reference, which shows the highest performance among the existing mobile communication systems, and conduct a performance comparison. System-level simulation is performed based on widely-used OPNET tool. We implement modules including central unit (CU), CoMP eNodeB (CeNB), user equipment (UE), and multiple-input multiple-output (MIMO) channel model, while designing the inter-cell cooperative transmission system. Under WINNER wireless channel model and international telecommunication union (ITU) network model environments, we then evaluate the performance of edge users who belong to the lower 5% in terms of spectral efficiency. It is finally shown that throughput of the proposed CoMP system gets improved up to 2.5 times compared to that of the 3GPP LTE reference system.

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Frequency Resource Obtaining Method Based on D2D Device Discovery in Public Safety Communication Networks (재난 무선통신을 위한 D2D 단말탐색 기반 주파수 자원 확보 기술)

  • Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1440-1442
    • /
    • 2016
  • As long term evolution (LTE) is the most widely deployed broadband communication technology so far, efforts are being made to develop LTE-based mission critical public safety (PS) communication systems. In this paper, we propose a device-to-device (D2D) discovery-based radio resource acquisition scheme to support the LTE D2D communication to PS systems and the realization of resource forwarding for user equipments in emergency area.

Complexity Reduced CP Length Pre-decision Algorithm for SSS Detection at Initial Cell Searcher of 3GPP LTE Downlink System (3GPP LTE 하향링크 시스템의 초기 셀 탐색기 SSS 검출 시 복잡도 최소화를 위한 CP 길이 선 결정 알고리즘)

  • Kim, Young-Bum;Kim, Jong-Hun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.656-663
    • /
    • 2009
  • In 3GPP LTE system downlink, PSS (primary synchronization signal) and SSS (secondary synchronization signal) sequences are used for initial cell search and synchronization. UE (user equipment) detects slot timing, frequency offset, and cell ID by using PSS. After that it should detect frame timing, cell group ID, and CP length by using SSS. But in 3GPP LTE, there are two kinds of CP length, so we should operate FFT twice. In this paper, to minimize SSS detection complexity in cell searcher, we propose a CP length pre-decision algorithm that reduces the arithmetical complexity by half at most, with negligible performance degradation.

Joint Precoding Technique for Interference Cancellation in Multiuser MIMO Relay Networks for LTE-Advanced System (LTE-Advanced 시스템의 다중 사용자 MIMO Relay 네트워크에서 간섭 제거를 위한 Joint Precoding 기술)

  • Malik, Saransh;Moon, Sang-Mi;Kim, Bo-Ra;Kim, Cheol-Sung;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.15-26
    • /
    • 2012
  • In this paper, we perform interference cancellation in multiuser MIMO (Multiple Input Multiple Output) relay network with improved Amplify-and-Forward (AF) and Decode-and-Forward (DF) relay protocols. The work of interference cancellation is followed by evolved NodeB (eNB), Relay Node (RN) and User Equipment (UE) to improve the error performance of whole transmission system with the explicit use of relay node. In order to perform interference cancellation, we use Dirty Paper Coding (DPC) and Thomilson Harashima Precoding (THP) allied with detection techniques Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Successive Interference Cancellation (SIC) and Ordered Successive Interference Cancellation (OSIC). These basic techniques are studied and improved in the proposal by using the functions of relay node. The performance is improved by Decode-and-Forward which enhance the cancellation of interference in two layers at the cooperative relay node. The interference cancellation using weighted vectors is performed between eNB and RN. In the final results of the research, we conclude that in contrast with the conventional algorithms, the proposed algorithm shows better performance in lower SNR regime. The simulation results show the considerable improvement in the bit error performance by the proposed scheme in the LTE-Advanced system.

Reduction of Authentication Cost Based on Key Caching for Inter-MME Handover Support (MME 도메인간 핸드오버 지원을 위한 키캐싱 기반 인증비용의 감소기법)

  • Hwang, Hakseon;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.209-220
    • /
    • 2013
  • Handover is the technology to minimize data lose of mobile devices and make continuous communication possible even if the device could be moved from one digital cell site to another one. That is, it is a function that enables the mobile user to avoid the disconnection of phone conversations when moving from a specific mobile communication area to another. Today, there are a lot of ongoing researches for fast and efficient hand-over, in order to address phone call's delay and disconnection which are believed to be the mobile network's biggest problems, and these should essentially be resolved in all mobile networks. Thanks to recent technology development in mobile network, the LTE network has been commercialized today and it has finally opened a new era that makes it possible for mobile phones to process data at high speed. In LTE network environment, however, a new authentication key must be generated for the hand-over. In this case, there can be a problem that the authentication process conducted by the hand-over incurs its authentication cost and delay time. This essay suggests an efficient key caching hand-over method which simplifies the authentication process: when UE makes hand-over from oMME to nMME, the oMME keeps the authentication key for a period of time, and if it returns to the previous MME within the key's lifetime, the saved key can be re-used.

A Study on Application of DSS for enhancing 5G Coverage (5G 커버리지 개선을 위한 DSS 적용 방안 연구)

  • Seong-Gyoon, Park;Soong-Hwan, Ro
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.693-704
    • /
    • 2022
  • 5G service uses mid-band (n78) than existing mobile communication frequencies, so it is necessary to improve 5G coverage by utilizing low-band frequencies below 2 GHz. To this end, the application of Dynamic Spectrum Sharing technology of LTE and 5G-NR system using most of the low-band frequencies is required. In this paper, signaling overhead factors for DSS application and RF issues for terminal implementation are derived, and signaling overhead ratios from the respective perspectives of 5G-NR and LTE for the 1.8GHz band (50MHz width) that can utilize wide-bandwidth among low-band frequencies are estimated. Also handset RF issues were analyzed. Based on the analysis results, if DSS technology using low band is applied, it is expected that excellent 5G service quality can be provided due to 5G coverage improvement when LTE traffic quickly migrates to 5G-NR.

Radio Resource Scheduling Approach For Femtocell Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • The radio resources available in a wireless network system are limited. Therefor, job of managing resources is not easy task. Because the resources are shared among the UEs that are connected, the process of assigning resources must be carefully controlled. The packet scheduler in an LTE network is in charge of allocating resources to the user equipment (UE). Femtocells networks are being considered as a promising solution for poor channel performance for mulitple environments. The implementation of femtocells into a macrocell (traditional base station) would boost the capacities of the cellular network. To increase femtocells network capacity, a reliable Packet Scheduler mechanism should be implemented. The Packet Scheduler technique is introduced in this paper to maximize capacity of the network while maintaining fairness among UEs. The proposed solution operates in a manner consistent with this principle. An analysis of the proposed scheme's performance is conducted using a computer simulation. The results reveal that it outperforms the well-known PF scheduler in terms of cell throughput and average throughput of UEs.