• Title/Summary/Keyword: LTE Throughput

Search Result 109, Processing Time 0.02 seconds

Performance Analysis of LTE-R Radio Communication Systems in High Speed Train Environment (열차 고속 주행환경에서 LTE-R 무선통신시스템 성능 분석)

  • Kwon, You-Chul;Choi, Jun-Sung;Oh, Hyun-Seo;Kim, Seong-Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.587-594
    • /
    • 2022
  • This paper analyzed radio link throughput performance by applying radio link simulation and test equipment because there is limit in train filed test in 420 km/h high speed environment. According to the radio performance analysis, the throughput performance is slightly degraded in QPSK and 16QAM modulation schemes. But throughput performance is highly degraded in 64QAM modulation scheme.

Compatibility between LTE Cellular Systems and WLAN (LTE 셀룰라 시스템과 무선랜의 양립성 분석)

  • Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • 3GPP long-term evolution(LTE) band 2.3~2.4 GHz is adjacent to 2.4~2.5 GHz band for WLAN, and therefore compatibility study of the two systems is desirable. We propose a dynamic system simulation methodology to investigate the effect of WLAN interference on LTE systems. As capturing space/time/frequency changes in system parameters, the dynamic system simulation can exactly predict real system performance. Using the proposed methodology, we obtain LTE downlink throughput loss for the frequency separation between the two systems. Throughput loss under 1 % is obtained from guard band over 11 MHz(single channel allocation) or 10 MHz(three channel allocation).

Analysis of Throughput Field Test Data Acquired Using Vehicle Mounted Multi-Band MIMO Antenna (다중대역 MIMO 안테나의 차량탑재 필드테스트 결과 분석)

  • Kim, Seung-Ho;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.745-751
    • /
    • 2018
  • This paper reports on the design of a multiband multiple-input and multiple-output(MIMO) antenna for long-term evolution(LTE) vehicular communication and includes an analysis of the throughput field test results that were acquired by mounting the antenna to a vehicle. The antenna used for the field test was designed as a planar structure and included multiple stubs to obtain multiband resonant characteristics operating in the LTE(0.8~0.9 GHz, 1.7~2.2 GHz), Wi-Fi(2.4~2.48 GHz), and wireless access in vehicular environments (WAVE)(5.8~5.9 GHz) frequency bands. For the field test, antenna prototypes were mounted on the dashboard and roof of a vehicle and connected to the experimental LTE modem. The data transfer rate(throughput), signal-to-interference-plus-noise ratio(SINR), and reference signal received quality(RSRQ) were measured and analyzed in various real-world radio wave environments. Based on these results, the relationship between the SINR and throughput according to the field intensity is confirmed.

Outage Probability and Throughput Management Using CoMP under the Coexistence of PS-LTE and LTE-R Networks (안전망과 철도망 공존환경에서 협력통신을 이용한 아웃티지 및 수율 관리)

  • Lim, WonHo;Jeong, HyoungChan;Ahmad, Ishtiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • In the Republic of Korea, the LTE-based public safety (PS-LTE) network is being built for the 700 MHz frequency band. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network. Therefore, it is essential to utilize the co-channel interference management schemes for the coexistence of two LTE networks in order to increase the system throughput and to reduce the user outage probability. In this paper, we focus on the downlink (DL) system for the coexistence of PS-LTE and LTE-R networks by considering non radio access network (RAN) sharing and LTE-R RAN sharing by PS-LTE users (UEs) to analyze the UE throughput. Moreover, we also utilize the cooperative communications schemes, such as coordinated multipoint (CoMP) for the coexistence of PS-LTE and LTE-R networks in order to reduce the UE outage probability. We categorize the coexistence of PS-LTE and LTE-R networks into four different scenarios, and evaluate the performance of each scenario by the important performance indexes, such as UE average throughput and UE outage probability.

Study on the Spectrum Sharing based on Analysis of Channel Interference between LTE/LTE-Advanced Systems (LTE/LTE-Advanced 시스템간 채널 간섭분석을 통한 주파수 공유 연구)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • Since OFDM(Orthogonal Frequency Division Multiplexing) technology is applied into LTE(Long Term Evolution)/LTE-Advanced system, it is important to estimate the spectrum sharing and to analyze interference in LTE system based on the characteristics of frequency assignment. Therefore, in this paper, a study on the adjacent channel interference between two operators/systems to provide LTE services. For co-existence of LTE systems, the relative capacity loss and the relative throughput loss in uplink and downlink have been simulated to evaluated ACIR(Adjacent Channel Interference Ratio) values with 5% loss rate. Some parameters such as the location of user, aggressor bandwidth, and the separation offset affect the required ACIR value for spectrum sharing, and these results and interference analysis schemes in this article can provide reliable reference for LTE RF standardization and efficient frequency utilization in future.

Interference Effects of Low-Power Devices on the UE Throughput of a CR-Based LTE System

  • Kim, Soyeon;Sung, Wonjin
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.353-359
    • /
    • 2014
  • Recently, the use of mobile devices has increased, and mobile traffic is growing rapidly. In order to deal with such massive traffic, cognitive radio (CR) is applied to efficiently use limited-spectrum resources. However, there can be multiple communication systems trying to access the white space (unused spectrum), and inevitable interference may occur to cause mutual performance degradation. Therefore, understanding the effects of interference in CR-based systems is crucial to meaningful operations of these systems. In this paper, we consider a long-term evolution (LTE) system using additional spectra by accessing the TV white space, where low-power devices (LPDs) are licensed primary users, in addition to TV broadcasting service providers. We model such a heterogeneous system to analyze the co-existence problem and evaluate the interference effects of LPDs on LTE user equipment (UE) throughput. We then present methods to mitigate the interference effects of LPDs by 'de-selecting' some of the UEs to effectively increase the overall sector throughput of the CR-based LTE system.

Human Hand Effect on The MIMO OTA Performance of LTE Mobile Handset (LTE 이동 단말의 MIMO 무선 성능과 Hand effect)

  • Cho, Y.S.;Kim, Y.R.;Noh, S.P.;Shim, H.J.;Kim, I.K.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.91-98
    • /
    • 2012
  • Since the major cellular data service providers in U.S, Japan as well as in Korea started the LTE (Long Term Evolution) service, there has been more strong need for the methods that can accurately measure the MIMO (Multi Input-Multi Output) OTA (Over The Air) performance of LTE handsets because the performance of the MIMO antenna determines the data throughput in the downlink. In this paper, the hand effect on the MIMO antenna performance is analyzed by numerically and experimentally. The hand effect on the LTE mobile handset is analyzed by measuring the link level performance in the MIMO OTA system.

Optimized Relay Node Deployment and Resource Allocation in LTE-Advanced Relay Networks

  • Fenghe, Huang;Joe, In-Whee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.146-148
    • /
    • 2014
  • In LTE-Advanced (LTE-A) networks, Relay nodes (RN) are used to improve the system coverage. However, it also brings new kind of interference to users which reduces the system performance. In this paper, we use an optimization relay node deployment to reduce the interference as much as possible and resource allocation to improve the user throughput. Our simulation results show our method is able to improve the user SINR and throughput.

Dynamic Resource Allocation of Random Access for MTC Devices

  • Lee, Sung-Hyung;Jung, So-Yi;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.546-557
    • /
    • 2017
  • In a long term evolution-advanced (LTE-A) system, the traffic overload of machine type communication devices is a challenge because too many devices attempt to access a base station (BS) simultaneously in a short period of time. We discuss the challenge of the gap between the theoretical maximum throughput and the actual throughput. A gap occurs when the BS cannot change the number of preambles for a random access channel (RACH) until multiple numbers of RACHs are completed. In addition, a preamble partition approach is proposed in this paper that uses two groups of preambles to reduce this gap. A performance evaluation shows that the proposed approach increases the average throughput. For 100,000 devices in a cell, the throughput is increased by 29.7% to 114.4% and 23.0% to 91.3% with uniform and Beta-distributed arrivals of devices, respectively.

Interference-Aware Radio Resource Allocation in D2D Underlaying LTE-Advanced Networks

  • Xu, Shaoyi;Kwak, Kyung Sup;Rao, Ramesh R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2626-2646
    • /
    • 2014
  • This study presents a power and Physical Resource Blocks (PRBs) joint allocation algorithm to coordinate uplink (UL) interference in the device-to-device (D2D) underlaying Long Term Evolution-Advanced (LTE-A) networks. The objective is to find a mechanism to mitigate the UL interference between the two subsystems and maximize the weighted sum throughput as well. This optimization problem is formulated as a mixed integer nonlinear programming (MINLP) which is further decomposed into PRBs assignment and transmission power allocation. Specifically, the scenario of applying imperfect channel state information (CSI) is also taken into account in our study. Analysis reveals that the proposed PRBs allocation strategy is energy efficient and it suppresses the interference not only suffered by the LTE-A system but also to the D2D users. In another side, a low-complexity technique is proposed to obtain the optimal power allocation which resides in one of at most three feasible power vectors. Simulations show that the optimal power allocation combined with the proposed PRBs assignment achieves a higher weighted sum throughput as compared to traditional algorithms even when imperfect CSI is utilized.