• Title/Summary/Keyword: LTCC (Low Temperature Co-fired Ceramics)

Search Result 66, Processing Time 0.035 seconds

Effect of $Al_2O_3$ Particle Size on Thermal Properties of Glass-Ceramics for LTCC Material (저온동시소성용 결정화 유리의 필러 사이즈가 열적 특성에 미치는 영향)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.281-281
    • /
    • 2007
  • Low Temperature Co-fired Ceramic (LTCC) technology has been used in electronic device for various functions. LTCC technology is to fire dielectric ceramic and a conductive electrode such as Ag or Cu thick film below the temperature of $900^{\circ}C$ simultaneously. The glass-ceramic has been widely used for LTCC materials due to its low sintering temperature, high mechanical properties and low dielectric constants. To obtain the high strength, addition of filler, the microstructure should have various crystals and low pores in a composite. In this study, two glass frits were mixed with different alumina size(0.5, 2, 3.7um) and sintered at the range of $850{\sim}950^{\circ}C$. The microstructure, crystal phases, thermal and mechanical properties of the composites were investigated using FE-SEM, XRD, TG-DTA, Dilatomer. When the particle size of $Al_2O_3$ filler increased, the starting temperatures for the densification of the sintered bodies, onset point of crystallization, peak crystallization temperature in the glass-ceramic composites decreased gradually. After sintered at $900^{\circ}C$, the glass frits were crystallized as $CaAl_2Si_2O_8\;and\;CaMgSi_2O_6$. The purpose of our study is to understand the relationship between the $Al_2O_3$ particle size and thermal properties in composites.

  • PDF

Design and Fabrication of Multi-layer LTCC Bandpass Filter using DGS (DGS 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작)

  • 송희석;박규호;조영균;김형석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.172-177
    • /
    • 2004
  • In this paper, DGS(Defected Ground Structure) is applied to multi-layer structure using LTCC(Low Temperature Co-fired Ceramics). Sprial DGS is adopted in order for size-reduction and higher quality factor, the multi-layer DGS has the same characteristics as the planar DGS. Multi-layer bandpass filter of new shape is confiured using two multi-layer spiral DGS and is designed with no via-hole for the simple process. 5.25 GHz Wireless LAN bandpass filter is designed and fabricated, the insertion loss of the filter is measured less than 1.5 dB, and the size is 2.0 mm${\times}$1.2 mm${\times}$1.1 mm(L${\times}$W${\times}$H).

Effect of Glass Additions on the Adhesion and Electrical Conductivity of Photoimageable Silver Paste

  • Lee, Eun-Heay;Heo, Yu-Jin;Kim, Hyo-Tae;Kim, Jong-Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • Anorthite forming glass frits in amounts up to 25 vol% of the silver powder were added to improve the adhesion between the conductor pattern formed by thick film photoimageable process and the low temperature co-fired ceramics (LTCC) substrate. The sheet resistance of the conductor pattern was raised from 0.13 ${\Omega}/{\square}$ to 2.25 ${\Omega}/{\square}$ as the volume percentage of glass frit increased up to 25 vol%. The adhesion strength was improved with this glass frit increase, but it decreased when the glass content exceeded 20 vol% which are possibly attributed to the liquid pool effect and the reduced fracture toughness in the interface between conductor and LTCC layer. The shrinkage of the width of the conductor pattern decreased with the addition of glass contents.

Impedance spectroscopy analysis of the $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films

  • Ham, Yong-Su;Go, Jung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.27-28
    • /
    • 2009
  • In this study, we have fabricated the 3 wt% $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd printed $Al_2O_3$ substrates for the LTCCs (Low Temperature Co-fired Ceramics) applications. From the X-ray diffraion analysis, 3 wt% $Li_2CO3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at 900 $^{\circ}C$ have perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO3$ doped BST thick films were measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO3$ doped BST thick films, we employed the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO3$ doped BST thick films were measured from 20 Hz to 1 MHz at the various temperatures.

  • PDF

Sinterability and Microwave Dielectric Properties of xZnWO4-(1-x)TiO2 Ceramics Sintered at Low Temperature (저온 소결용 xZnWO4-(1-x)TiO2 세라믹스의 소결 및 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Kim, Kwan-Soo;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.855-861
    • /
    • 2006
  • Sinterability and microwave dielectric properties of $xZWO_{4}-(1-x)TiO_{2}$ ceramic systems with zinc-borosilicate glass and $TiO_{2}$ contents for LTCC(Low Temperature Co-fired Ceramics) were investigated. The addition of $3{\sim}10\;wt%$ ZBS glass ensured the sinterability below $900^{\circ}C$. In general, increasing ZBS glass content seemed to enhance the sinterability, but the quality factor($Qxf_{0}$) significantly decreased due to the formation of an excessive liquid and second phases. As for the addition of $TiO_{2}$, the dielectric constant(${\varepsilon}_{r}$) and temperature coefficient of resonant frequency(${\tau}_{f}$) showed to increase, while the quality factor($Qxf_{0}$) did not show an apparent change. The composition of $0.7xZnWO_{4}-0.3TiO_{2}$ ceramics sintered at $900^{\circ}C$ with 5 wt% ZBS glass demonstrated 21.6 in dielectric constant(${\varepsilon}_{r}$), 14,800 in quality factor($Qxf_{0}$), and $+5\;ppm/^{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_{f}$).

Crystalline and electrical properties of ${Li_2}{CO_3}$ and MgO doped ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$ composites (${Li_2}{CO_3}$와 MgO가 첨가된 ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$의 결정학적 전기적 특성)

  • You, Hee-Wook;Park, Yong-Jun;Nam, Song-Min;Koo, Sang-Mo;Park, Jae-Yeong;Lee, Young-Hie;Koh, Jung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.3-4
    • /
    • 2006
  • ${Li_2}{CO_3}$ and MgO doped paraelectric ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$, materials were prepared and compared for LTCC applications. In these days LTCC (Low Temperature Co-fired Ceramics) technology has been widely employed for electronic modules for the communication systems such as front-end modules, antenna modules, and switching modules. In this paper, 1 ${\sim}$ 5 wt % of ${Li_2}{CO_3}$, and 30 wt % of MgO were added to ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$, respectively. The crystalline properties and electrical properties will be compared and discussed.

  • PDF

Low Temperature Sintering and Dielectric Properties of $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ with (ZBS, BZBS) glasses (붕규산염 유리 첨가에 따른 $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$의 저온 소결 및 유전 특성)

  • Kim, Kwan-Soo;Park, Jong-Guk;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Kang, Suk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.342-342
    • /
    • 2008
  • The low temperature sintering and microwave dielectric properties of ceramic/glass composites which were composed of ceramics in the $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ and zinc borosilicate glass/bismuth-zinc borosilicate glass were investigated with a view to applying the microwave dielectrics to low temperature co-fired ceramics. The $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ addition of 5 wt% ZBS and BZBS glass ensured a successful sintering below $900^{\circ}C$. In addition, pyrochlore phase was observed in the all composition. $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ with 5 wt% BZBS glasss demonstrated 70 as the dielectric constant ($\varepsilon_r$), 2,500 GHz as the Q$\times$f value, and -40 ppm/$^{\circ}C$ as TCF.

  • PDF

Design and Implementation of Broadband Antenna and Diplexer for Dual- Band Handsets

  • Joung, Myoung-Sub;Park, Jun-Seok;Kim, Hyeong-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.288-294
    • /
    • 2004
  • In this paper, a ceramic antenna and diplexer are designed for dual-band handset ap plications. Basically, the antenna is designed by using the meander line configuration. The diplexer presented in this paper is composed of both low- and high-pass filters. We have designed the low- and high-pass filters with attenuation poles to improve the attenuation performances of the diplexer. The attenuation poles are located at each rejection frequency region so as to improve the shrinkage characteristic of the diplexer. In order to accomplish the volume effectiveness, the antenna and the diplexer have been designed and fabricated in a multi-layer structure. The diplexer designed with a multi-layer structure has inductors and capacitors, which are implemented by LTCC (Low Temperature Co-fired Ceramics) process technique. Design of the multi-layer antenna and diplexer has been achieved by employing the full 3-D EM simulation. The designed antenna and diplexer offer excellent return loss and broadband performances with highly isolated rejection performance.

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

Bonding Strength of Conductive Inner-Electrode Layers in Piezoelectric Multilayer Ceramics

  • Wang, Yiping;Yang, Ying;Zheng, Bingjin;Chen, Jing;Yao, Jinyi;Sheng, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Multilayer ceramics in which piezoelectric layers of $0.90Pb(Zr_{0.48}Ti_{0.52})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Zn_{1/3}Nb_{2/3})O_3$ (0.90PZT-0.05PMS-0.05PZN) stack alternately with silver electrode layers were prepared by an advanced low-temperature co-fired ceramic (LTCC) method. The electrical properties and bonding strength of the multilayers were associated with the interface morphologies between the piezoelectric and silver-electrode layers. Usually, the inner silver electrodes are fabricated by sintering silver paste in multi-layer stacks. To improve the interface bonding strength, piezoelectric powders of 0.90PZT-0.05PMS-0.05PZN with an average particle size of $23{\mu}m$ were added to silver paste to form a gradient interface. SEM observation indicated clear interfaces in multilayer ceramics without powder addition. With the increase of piezoelectric powder addition in the silver paste, gradient interfaces were successfully obtained. The multilayer ceramics with gradient interfaces present greater bonding strength as well as excellent piezoelectric properties for 30~40 wt% of added powder. On the other hand, over addition greatly increased the resistance of the inner silver electrodes, leading to a piezoelectric behavior like that of bulk ceramics in multilayers.