Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.7-10
/
2021
에스컬레이터의 고장 여부를 사전에 파악하는 것은 경제적 손실뿐만 아니라 인명 피해를 예방할 수 있어서 매우 중요하다. 실제 이러한 고장 예측을 위한 많은 딥러닝 알고리즘이 연구되고 있지만, 설비의 이상 데이터 확보가 어려워 모델 학습이 어렵다는 문제점이 있다. 본 연구에서는 이러한 문제의 해결 방안으로 비지도 학습 기반의 방법론 중 하나인 LSTM Autoencoder 알고리즘을 사용해 에스컬레이터의 이상을 탐지하는 모델을 생성했고, 최종 실험 결과 모델 성능 AUROC가 0.9966, 테스트 Accuracy가 0.97이라는 높은 정확도를 기록했다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.291-291
/
2020
제주도는 강수의 지표침투성이 좋은 화산섬의 지질특성상 지표수의 개발이용여건이 취약한 관계로 용수의 대부분을 지하수에 의존하고 있다. 따라서 제주도는 정책 및 연구적으로 오랜 기간동안 지하수의 보전관리에 많은 노력을 기울여 오고 있다. 하지만 최근 기후변화로 인한 강수의 변동성 증가로 인해 지하수위의 변동성 또한 증가할 가능성이 있으며 따라서 지하수위의 급격한 하강에 대비하여 지하수위의 예측 및 지하수 취수량 관리의 필요성이 요구되고 있다. 지하수에 절대적으로 의존하고 있는 제주도의 수자원 이용 여건을 고려할 때, 지하수의 취수량 관리를 위한 지하수위의 실시간 예측이 필요한 실정이다. 하지만 기존의 예측방법에 의한 제주도 지하수위 예측기간은 충분히 길지 않으며 예측기간이 길어지면 예측성능이 낮아지는 문제점이 있었다. 본 연구에서는 이러한 단점을 보완하기 위해 딥러닝 알고리즘인 Long Short Term Memory(LSTM)를 활용하여 제주도 남동쪽 표선유역 중산간지역의 1개 지하수위 관측정에 대해 지하수위를 예측하고 분석하였다. R 기반의 Keras 패키지에 있는 LSTM 알고리즘을 사용하였고, 입력자료는 인근의 성판악 및 교래 강우관측소의 일단위 강수량자료와 인근 취수정의 지하수 취수량자료 및 연구대상 관측정의 지하수위 자료를 사용하였으며, 사용된 자료의 기간은 2001년 2월 11일부터 2019년 10월 31일까지 이다. 2001년부터 13년의 보정 및 3년의 검증용 시계열자료를 사용하여 매개변수의 보정 및 과적합을 방지하였고, 3년의 예측용 시계열자료를 사용하여 LSTM 알고리즘의 예측성능을 평가하였다. 목표 예측일수는 1일, 10일, 20일, 30일로 설정하였으며 보정, 검증 및 예측기간에 대한 모의결과의 평가지수로는 Nash-Sutcliffe Efficiency(NSE)를 활용하였다. 모의결과, 보정, 검증 및 예측기간에 대한 1일 예측의 NSE는 각각 0.997, 0.997, 0.993 이었고, 10일 예측의 NSE는 각각 0.993, 0.912, 0.930 이었다. 20일 예측의 경우 NSE는 각각 0.809, 0.781, 0.809 이었으며 30일 예측의 경우 각각 0.677, 0.622, 0.633 이었다. 이것은 LSTM 알고리즘에 의한 10일 예측까지는 관측 지하수위 시계열자료를 매우 적절히 모의할 수 있다는 것을 의미하며, 20일 예측 또한 적절히 모의할 수 있다는 것을 의미한다. 따라서 LSTM 알고리즘을 활용하면 본 연구대상지점에 대한 2주일 또는 3주일의 안정적인 지하수위 예보가 가능하다고 판단된다. 또한 LSTM 알고리즘을 통한 실시간 지하수위 예측은 지하수 취수량 관리에 활용할 수 있을 것이다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.374-380
/
2022
This paper shows the results of a study that predicts changes in seawater conditions in sea farms using machine learning-based long short term memory (LSTM) algorithms. Hardware was implemented using dissolved oxygen, salinity, nitrogen ion concentration, and water temperature measurement sensors to collect seawater condition information from sea farms, and transferred to a cloud-based Firebase database using LoRa communication. Using the developed hardware, seawater condition information around fish farms in Tongyeong and Geoje was collected, and LSTM algorithms were applied to learning results using these actual datasets to obtain predictive results showing 87% accuracy. Flask and REST APIs were used to provide users with predictive results for each of the four parameters, including dissolved oxygen. These predictive results are expected to help fishermen reduce significant damage caused by fish group death by providing changes in sea conditions in advance.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.32-32
/
2019
본 연구에서는 다양한 시계열 예측에서 우수한 성과를 보이고 있는 딥러닝 알고리즘 LSTM(Long & Short Term Memory) 모형의 수문시계열 분석에 있어서의 적용성을 검토하고, 모형의 활용가능성과 한계점을 제시하는 것을 목적으로 한다. 이를 위해 물리적 강우-유출 모형과의 비교 검토, 일반하천 및 감조하천에서의 수위 예측, 월강수량 및 댐방류량을 활용한 갈수량 예측 등에 LSTM 모형을 적용하고, 결과분석을 통해 모형의 장 단점을 요약하였다. 상기 목적을 위한 모형적용 결과, LSTM 모형은 수문시계열 예측에 있어 우수한 예측능력을 보이고 있으며, 이는 양적/질적 수문자료가 충분히 확보되었지만, 수문해석 모형구축에 제약이 있는 유역에 대해서 보완적 수단으로 사용이 가능할 것으로 판단된다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.1
/
pp.145-152
/
2019
In this paper, we proposed a shaking image stabilization algorithm using deep learning. The proposed algorithm utilizes deep learning, unlike some 2D, 2.5D and 3D based stabilization techniques. The proposed algorithm is an algorithm that extracts and compares features of shaky images through CNN network structure and LSTM network structure, and transforms images in reverse order of movement size and direction of feature points through the difference of feature point between previous frame and current frame. The algorithm for stabilizing the shake is implemented by using CNN network and LSTM structure using Tensorflow for feature extraction and comparison of each frame. Image stabilization is implemented by using OpenCV open source. Experimental results show that the proposed algorithm can be used to stabilize the camera shake stability in the up, down, left, and right shaking images.
KIPS Transactions on Software and Data Engineering
/
v.11
no.6
/
pp.245-254
/
2022
Proteins are the basic unit of all life activities, and understanding them is essential for studying life phenomena. Since the emergence of the machine learning methodology using artificial neural networks, many researchers have tried to predict the function of proteins using only protein sequences. Many combinations of deep learning models have been reported to academia, but the methods are different and there is no formal methodology, and they are tailored to different data, so there has never been a direct comparative analysis of which algorithms are more suitable for handling protein data. In this paper, the single model performance of each algorithm was compared and evaluated based on accuracy and speed by applying the same data to CNN, LSTM, and GRU models, which are the most frequently used representative algorithms in the convergence research field of predicting protein functions, and the final evaluation scale is presented as Micro Precision, Recall, and F1-score. The combined models CNN-LSTM and CNN-GRU models also were evaluated in the same way. Through this study, it was confirmed that the performance of LSTM as a single model is good in simple classification problems, overlapping CNN was suitable as a single model in complex classification problems, and the CNN-LSTM was relatively better as a combination model.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.93-93
/
2023
최근 범지구적인 기후변화로 인해 도시유역의 홍수 발생 빈도가 빈번하게 발생하고 있다. 이로 인해 불투수성이 큰 도시지역의 침수 등의 자연재해 증가로 인명 및 재산피해가 발생하고 있다. 이에 따라 하수도의 제 기능을 수행하고 있다면 문제가 없지만 이상기후로 인한 기록적인 폭우에 의해 침수가 발생하고 있다. 홍수 및 집중호우와 같은 극치사상의 발생빈도가 증가됨에 따라 강우 사상의 변동에 따른 하수관로의 수위를 예측하고 침수에 대해 대처하기 위해 과거 수위에 따른 수위 예측은 중요할 것으로 판단된다. 본 연구에서는 수위 예측 연구에 많이 활용되고 있는 시계열 학습에 탁월한 LSTM 알고리즘을 활용한 하수관로 수위 예측을 진행하였다. 데이터의 학습과 검증을 수행하기 위해 실제 하수관로 수위 데이터를 수집하여 연구를 수행하였으며, 대상자료는 서울특별시 강동구에 위치한 하수관로 수위 자료를 활용하였다. 하수관로 수위 예측에는 딥러닝 알고리즘 RNN-LSTM 알고리즘을 활용하였으며, RNN-LSTM 알고리즘은 하천의 수위 예측에 우수한 성능을 보여준 바 있다. 1분 뒤 하수관로 수위 예측보다 5분, 10분 뒤 또는 1시간 3시간 등 다양한 분석을 실시하였다. 데이터 분석을 위해 하수관로 수위값 변동이 심한 1주일을 선정하여 분석을 실시하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였으며, 하수관로 수위 고유번호 25-0001을 대상으로 예측을 하였다. 학습에는 2012년 ~ 2018년의 하수관로 수위 자료를 활용하였으며, 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.317-317
/
2021
효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.
Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.