• 제목/요약/키워드: LSTM 신경망

검색결과 227건 처리시간 0.022초

자연어처리와 기계학습을 통한 우울 감정 분석과 인식 (Analysis and Recognition of Depressive Emotion through NLP and Machine Learning)

  • 김규리;문지현;오유란
    • 문화기술의 융합
    • /
    • 제6권2호
    • /
    • pp.449-454
    • /
    • 2020
  • 본 논문에서는 SNS에 게시된 글의 내용을 통해 사용자의 우울함을 검출하는 기계학습 기반 감성 분석 시스템을 제안한다. 게시한 글의 작성자가 기분을 파악하는 시스템을 구현하기 위해 먼저 감정 사전에서 우울한 감정의 단어와 그렇지 않은 감정과 관련된 단어를 목록화하였다. 그 후, SNS를 대표하는 서비스 중 하나인 트위터의 텍스트 자료에서 검색 키워드를 선정하고 크롤링을 시행하여 우울한 감정을 띤 문장 1297개와 그렇지 않은 문장 1032개로 이뤄진 학습 데이터셋을 구축하였다. 마지막으로 텍스트 기반 우울감 검출 목적에 가정 적합한 기계학습 모델을 찾기 위해 수집한 데이터셋을 바탕으로 순환신경망, 장단기메모리, 그리고 게이트 순환 유닛을 비교 평가하였고, 그 결과 GRU 모델이 다른 모델들보다 2~4%가량의 높은 92.2%의 정확도를 보임을 확인하였다. 이 연구 결과는 SNS상의 게시글을 토대로 사용자의 우울증을 예방하거나 치료를 유도하는 데 활용될 수 있을 것이다.

머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구 (A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning)

  • 김경민;김규석;남대식
    • 한국경제지리학회지
    • /
    • 제25권1호
    • /
    • pp.171-181
    • /
    • 2022
  • 부동산 시장 분석에 있어 기본이 되는 정량적 데이터는 부동산 가격 지수이다. OECD와 같은 국제기구에서는 국가별 부동산 가격 지수를 공표하고, 한국부동산원에서는 광역시 단위와 시군구 단위의 지수를 산출한다. 그런데 공간단위를 시군구보다 정교한 동단위, 아파트 단지 단위로 설정하는 경우, 여러 문제점을 맞이하게 된다. 대표적인 문제는 결측치이다. 공간적 범위를 좁힐수록 단위 기간에 따라 거래가 적거나 아예 존재하지 않는 경우가 존재하기에 이 경우에는 지수의 산출이 불가능한 결측치가 발생할 수 있다. 본 연구에서는 지도학습 기반의 머신러닝 기법을 활용하여 특정 범위와 기간에 거래가 존재하지 않아 발생할 수 있는 결측치를 보완하는 기법을 제안한다. 본 모형을 통해 부동산 매매 지수의 실제값이 존재하는 것들의 예측을 통해 그 정확도를 검증하고 결측치가 발생한 것들의 예측도 해 볼 수 있었다.

데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델 (Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems)

  • 임채영;여채은;안성율;이상현
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.883-888
    • /
    • 2023
  • 데이터센터는 24시간 365일 IT 서비스를 제공하는 곳이기 때문에, 2030년에는 데이터센터의 전력 소비량은 약 10%로 증가될 것으로 예측되고, 고밀도 IT장비들의 도입이 점차 증가하면서, IT장비가 안정적으로 운영될 수 있도록 냉방 에너지 절감 및 이를 위한 에너지 관리가 갖춰져야 하기에 다양한 연구가 요구되고 있는 상황이다. 본 연구는 데이터센터의 에너지 절약을 위해 다음과 같은 과정을 제안한다. 데이터센터를 CFD 모델링하고, 인공지능기반 열환경 예측 모델을 제안하였으며, 실측 데이터와 예측 모델 그리고 CFD 결과를 비교하여 최종적으로 데이터 센터의 열관리 성능을 평한 결과 전처리 방식은 정규화 방식으로 사용되었고, 정규화에 따른 RCI, RTI 및 PUE의 예측값 또한 유사한 것을 확인할 수 있다. 따라서 본 연구에서 제안하는 알고리즘으로 데이터센터에 적용될 열환경 예측 모델로 적용 및 제공할 수 있을 것으로 판단된다.

시계열 데이터 활용에 관한 동향 연구 (A Study on Trend Using Time Series Data)

  • 최신형
    • 산업과 과학
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 2024
  • 인류의 출현과 함께 시작된 역사에는 기록이라는 수단이 있기에 현재에 사는 우리는 데이터를 통해 과거를 확인할 수 있다. 생성되는 데이터는 일정 순간에만 발생하여 저장될 수도 있지만, 과거로부터 현재까지 일정 시간 간격 동안 계속해서 생성될 뿐만 아니라 다가올 미래에도 발생함으로써 이를 활용하여 예측하는 것 또한 중요한 작업이다. 본 논문은 수많은 데이터 중에서 시계열 데이터의 활용 동향을 알아보기 위해서 시계열 데이터의 개념에서부터 머신러닝 분야에서 시계열 데이터 분석에 주로 사용되는 Recurrent Neural Network와 Long-Short Term Memory에 대해 분석하고, 이런 모델들을 활용한 사례의 조사를 통해 의료 진단, 주식 시세 분석, 기후 예측 등 다양한 분야에 활용되어 높은 예측 결과를 보이고 있음을 확인하였고, 이를 바탕으로 향후 활용방안에 대하여 모색해본다.

인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구 (Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence)

  • 조유정;손권상;권오병
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.103-128
    • /
    • 2021
  • 최근 주식의 수익률과 거래량을 설명하는 주요 요인으로서 투자자의 관심도와 주식 관련 정보 전파의 영향력이 부각되고 있다. 또한 인공지능과 같은 혁신 신기술을 개발보급하거나 활용하려는 기업의 경우 거시환경 및 시장 불확실성 때문에 기업의 미래 주식 수익률과 주식 변동성을 예측하기 어렵다는 문제를 가지고 있다. 이는 인공지능 활성화의 장애요인으로 인식되고 있다. 따라서 본 연구의 목적은 인공지능 관련 기술 키워드의 인터넷 검색량을 투자자의 관심 척도로 사용하여, 기업의 주가 변동성을 예측하는 기계학습 모형을 제안하는 것이다. 이를 위해 심층신경망 LSTM(Long Short-Term Memory)과 벡터자기회귀(Vector Autoregression)를 통해 주식시장을 예측하고, 기술의 사회적 수용 단계에 따라 키워드 검색량을 활용한 주가예측 성능 비교를 통해 기업의 투자수익 예측이나 투자자들의 투자전략 의사결정을 지원하는 주가 예측 모형을 구축하였다. 또한 인공지능 기술의 세부 하위 기술에 대한 분석도 실시하여 기술 수용 단계에 따른 세부 기술 키워드 검색량의 변화를 살펴보고 세부기술에 대한 관심도가 주식시장 예측에 미치는 영향을 살펴보았다. 이를 위해 본 연구에서는 인공지능, 딥러닝, 머신러닝 키워드를 선정하여, 2015년 1월 1일부터 2019년 12월 31일까지 5년간의 인터넷 주별 검색량 데이터와 코스닥 상장 기업의 주가 및 거래량 데이터를 수집하여 분석에 활용하였다. 분석 결과 인공지능 기술에 대한 키워드 검색량은 사회적 수용 단계가 진행될수록 증가하는 것으로 나타났고, 기술 키워드를 기반으로 주가예측을 하였을 경우 인식(Awareness)단계에서 가장 높은 정확도를 보였으며, 키워드별로 가장 좋은 예측 성능을 보이는 수용 단계가 다르게 나타남을 확인하였다. 따라서 기술 키워드를 활용한 주가 예측 모델 구축을 위해서는 해당 기술의 하위 기술 분류를 고려할 필요가 있다. 본 연구의 결과는 혁신기술을 기반으로 기업의 투자수익률을 예측하기 위해서는 기술에 대한 대중의 관심이 급증하는 인식 단계를 포착하는 것이 중요하다는 점을 시사한다. 또한 최근 금융권에서 선보이고 있는 빅데이터 기반 로보어드바이저(Robo-advisor) 등 투자 의사 결정 지원 시스템 개발 시 기술의 사회적 수용도를 세분화하여 키워드 검색량 변화를 통해 예측 모델의 정확도를 개선할 수 있다는 점을 시사하고 있다.

미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용 (Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration)

  • 김영광;김복주;안성만
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.329-352
    • /
    • 2022
  • 미세먼지는 폐나 혈관에 침투해 각종 심장 질환이나 폐암 등의 호흡기 질환을 일으키는 것으로 보고되고 있다. 지하철은 일 평균 천만 명이 이용하는 교통수단으로, 깨끗하고 쾌적한 환경조성이 중요하나 지하터널을 통과하는 지하철의 운행 특성과 터널에 갇힌 미세먼지가 열차 풍으로 인해 지하역사로 이동하는 등의 문제로 지하역사의 미세먼지 오염도는 높은 것으로 나타나고 있다. 환경부와 서울시는 지하역사 공기질 개선대책을 수립하여 다양한 미세먼지 저감 노력을 기울이고 있다. 스마트 공기질 관리 시스템은 공기질 데이터 수집 및 미세먼지 농도를 예측하여 공기질을 관리하는 시스템으로 미세먼지 농도 예측 모델이 중요한 구성 요소이다. 그동안 시계열 데이터 예측에 관한 다양한 연구가 진행되어왔지만, 지하철 역사의 미세먼지 농도 예측과 관련해서는 통계나 순환신경망 기반의 딥러닝 모델 연구에 국한되어 있다. 이에 본 연구에서는 시공간 트랜스포머를 포함한 4개의 트랜스포머 기반 모델을 제안한다. 서울시 지하철 역사의 대합실을 대상으로 한 시간 후의 미세먼지 농도 예측실험을 수행한 결과, 트랜스포머 기반 모델들의 성능이 기존의 ARIMA, LSTM, Seq2Seq 모델들에 비해 우수한 성능을 나타냄을 확인하였다. 트랜스포머 기반 모델 중에서는 시공간 트랜스포머의 성능이 가장 우수하였다. 데이터 기반의 예측을 통하여 운영되는 스마트 공기질 관리 시스템은 미세먼지 예측의 정확도가 향상될수록 더욱더 효과적이고 에너지 효율적으로 운영될 수 있다. 본 연구 결과는 스마트 공기질 관리 시스템의 효율적 운영에 기여할 수 있을 것으로 기대된다.

AI 기법을 활용한 정수장 수질예측에 관한 연구 (Study on water quality prediction in water treatment plants using AI techniques)

  • 이승민;강유진;송진우;김주환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.151-164
    • /
    • 2024
  • 상수도 공급을 위한 정수장에서 전염소 또는 중염소 공정이 도입된 수처리 공정의 염소농도 관리에 필요한 공정제어를 위하여 AI 기술을 활용한 수질예측 기법이 연구되고 있다. 본 연구에서는 정수장 수처리 공정에서 실시간으로 관측, 생산되고 있는 수량·수질자료를 이용하여 염소소독 공정제어 자동화를 목적으로 침전지 후단의 잔류염소 농도를 예측하기 위한 AI 기반 예측모형을 개발하였다. AI 기반 예측모형은 과거 수질 관측자료를 학습하여 이후 시점의 수질에 대한 예측이 가능한 기법으로, 복잡한 물리·화학·생물학적 수질모형과 달리 간단하고 효율적이다. 다중회귀 모형과 AI 기반 모형인 랜덤포레스트와 LSTM을 이용하여 정수장의 침전지 후단 잔류염소 농도를 예측하여 비교하였다. 최적의 잔류염소 농도 예측을 위한 AI 모형의 입출력 구조로는 침전지 전단의 잔류염소 농도, 침전지 탁도, pH, 수온, 전기전도도, 원수의 유입량, 알칼리도, NH3 등을 독립변수로, 예측하고자 하는 침전지 유출수의 잔류염소 농도를 종속변수로 선정하였다. 독립변수는 침전지 후단의 잔류염소에 영향이 있는 정수장에서 확보가 가능한 관측자료중에서 분석을 통해 선별하였으며, 분석 결과 연구대상 정수장인 정수장에서는 중회귀모형, 신경망모형, 모델트리 및 랜덤포레스트 모형을 비교한 결과 랜덤포레스트에 기반한 모형오차가 가장 낮게 도출되는 결과를 얻을 수 있었다. 본 연구에서 제시하는 침전지 후단의 적정 잔류염소 농도 예측값은 이전 처리단계에서 염소주입량의 실시간 제어가 가능토록 할 수 있어 수처리 효율 향상과 약품비 절감에 도움이 될 것으로 기대된다.