• Title/Summary/Keyword: LSTM

Search Result 1,148, Processing Time 0.031 seconds

Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM (LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석)

  • Ju-Hyung Lee;Jun-Ki Hong
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 2022
  • Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Therefore, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'A'. According to the simulation results, it was confirmed that Bidirectional-LSTM(Bi-LSTM) compared to LSTM(Long Short-Term Memory) takes more simulation time about more than 50%, but the prediction accuracy of non-periodic time series data such as clothing product sales data is the same.

Mention Detection using Bidirectional LSTM-CRF Model (Bidirectional LSTM-CRF 모델을 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

Prediction of dam inflow based on LSTM-s2s model using luong attention (Attention 기법을 적용한 LSTM-s2s 모델 기반 댐유입량 예측 연구)

  • Lee, Jonghyeok;Choi, Suyeon;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.495-504
    • /
    • 2022
  • With the recent development of artificial intelligence, a Long Short-Term Memory (LSTM) model that is efficient with time-series analysis is being used to increase the accuracy of predicting the inflow of dams. In this study, we predict the inflow of the Soyang River dam, using the LSTM model with the Sequence-to-Sequence (LSTM-s2s) and attention mechanism (LSTM-s2s with attention) that can further improve the LSTM performance. Hourly inflow, temperature, and precipitation data from 2013 to 2020 were used to train the model, and validate and test for evaluating the performance of the models. As a result, the LSTM-s2s with attention showed better performance than the LSTM-s2s in general as well as in predicting a peak value. Both models captured the inflow pattern during the peaks but detailed hourly variability is limitedly simulated. We conclude that the proposed LSTM-s2s with attention can improve inflow forecasting despite its limits in hourly prediction.

Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera (RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지)

  • Shin, Byung Geun;Kim, Uung Ho;Lee, Sang Woo;Yang, Jae Young;Kim, Wongyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.491-500
    • /
    • 2021
  • In this study, we propose a method for detecting fall behavior using MS Kinect v2 RGBD Camera-based Human-Skeleton Keypoints and a 2-Stacked Bi-LSTM model. In previous studies, skeletal information was extracted from RGB images using a deep learning model such as OpenPose, and then recognition was performed using a recurrent neural network model such as LSTM and GRU. The proposed method receives skeletal information directly from the camera, extracts 2 time-series features of acceleration and distance, and then recognizes the fall behavior using the 2-Stacked Bi-LSTM model. The central joint was obtained for the major skeletons such as the shoulder, spine, and pelvis, and the movement acceleration and distance from the floor were proposed as features of the central joint. The extracted features were compared with models such as Stacked LSTM and Bi-LSTM, and improved detection performance compared to existing studies such as GRU and LSTM was demonstrated through experiments.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.73-80
    • /
    • 2024
  • In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

Classification of Behavior of UTD Data using LSTM Technique (LSTM 기법을 적용한 UTD 데이터 행동 분류)

  • Jeung, Gyeo-wun;Ahn, Ji-min;Shin, Dong-in;Won, Geon;Park, Jong-bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.477-479
    • /
    • 2018
  • This study was carried out to utilize LSTM(Long Short-Term Memory) technique which is one kind of artificial neural network. Among the 27 types of motion data released by the UTD(University of Texas at Dallas), 3-axis acceleration and angular velocity data were applied to the basic LSTM and Deep Residual Bidir-LSTM techniques to classify the behavior.

  • PDF

Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks (LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정)

  • Joo, Hyeong-Kil;Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.433-441
    • /
    • 2019
  • In this paper, a method of estimating speech parameters for ultrasonic Doppler signals reflected from the articulatory muscles using LSTM (Long Short Term Memory) RNN (Recurrent Neural Networks) was introduced and compared with the method using MLP (Multi-Layer Perceptrons). LSTM RNN were used to estimate the Fourier transform coefficients of speech signals from the ultrasonic Doppler signals. The log energy value of the Mel frequency band and the Fourier transform coefficients, which were extracted respectively from the ultrasonic Doppler signal and the speech signal, were used as the input and reference for training LSTM RNN. The performance of LSTM RNN and MLP was evaluated and compared by experiments using test data, and the RMSE (Root Mean Squared Error) was used as a measure. The RMSE of each experiment was 0.5810 and 0.7380, respectively. The difference was about 0.1570, so that it confirmed that the performance of the method using the LSTM RNN was better.

Estimation of CMIP5 based streamflow forecast and optimal training period using the Deep-Learning LSTM model (딥러닝 LSTM 모형을 이용한 CMIP5 기반 하천유량 예측 및 최적 학습기간 산정)

  • Chun, Beomseok;Lee, Taehwa;Kim, Sangwoo;Lim, Kyoung Jae;Jung, Younghun;Do, Jongwon;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.353-353
    • /
    • 2022
  • 본 연구에서는 CMIP5(The fifth phase of the Couple Model Intercomparison Project) 미래기후시나리오와 LSTM(Long Short-Term Memory) 모형 기반의 딥러닝 기법을 이용하여 하천유량 예측을 위한 최적 학습 기간을 제시하였다. 연구지역으로는 진안군(성산리) 지점을 선정하였다. 보정(2000~2002/2014~2015) 및 검증(2003~2005/2016~2017) 기간을 설정하여 연구지역의 실측 유량 자료와 LSTM 기반 모의유량을 비교한 결과, 전체적으로 모의값이 실측값을 잘 반영하는 것으로 나타났다. 또한, LSTM 모형의 장기간 예측 성능을 평가하기 위하여 LSTM 모형 기반 유량을 보정(2000~2015) 및 검증(2016~2019) 기간의 SWAT 기반 유량에 비교하였다. 비록 모의결과에일부 오차가 발생하였으나, LSTM 모형이 장기간의 하천유량을 잘 산정하는 것으로 나타났다. 검증 결과를 기반으로 2011년~2100년의 CMIP5 미래기후시나리오 기상자료를 이용하여 SWAT 기반 유량을 모의하였으며, 모의한 하천유량을 LSTM 모형의 학습자료로 사용하였다. 다양한 학습 시나리오을 적용하여 LSTM 및 SWAT 모형 기반의 하천유량을 모의하였으며, 최적 학습 기간을 제시하기 위하여 학습 시나리오별 LSTM/SWAT 기반 하천유량의 상관성 및 불확실성을 비교하였다. 비교 결과 학습 기간이 최소 30년 이상일때, 실측유량과 비교하여 LSTM 모형 기반 하천유량의 불확실성이 낮은 것으로 나타났다. 따라서 CMIP5 미래기후시나리오와 딥러닝 기반 LSTM 모형을 연계하여 미래 장기간의 일별 유량을 모의할 경우, 신뢰성 있는 LSTM 모형 기반 하천유량을 모의하기 위해서는 최소 30년 이상의 학습 기간이 필요할 것으로 판단된다.

  • PDF

Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs (한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발)

  • Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.47-52
    • /
    • 2018
  • Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.