• 제목/요약/키워드: LSTM(Long Short Term Memory)

검색결과 523건 처리시간 0.025초

Long Short-Term Memory를 이용한 통합 대화 분석 (Integrated Dialogue Analysis using Long Short-Term Memory)

  • 김민경;김학수
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.119-121
    • /
    • 2016
  • 최근 사람과 컴퓨터가 대화를 하는 채팅시스템 연구가 활발해지고 있다. 컴퓨터가 사람의 말에 적절한 응답을 하기 위해선 그 의미를 분석할 필요가 있다. 발화에 대한 의미 분석의 기본이 되는 연구로 감정분석과 화행분석이 있다. 그러나 이 둘은 서로 밀접한 연관이 있음에도 불구하고 함께 분석하는 연구가 시도되지 않았다. 본 연구에서는 Long Short-term Memory(LSTM)를 이용하여 대화체 문장의 감정과 화행, 서술자를 동시에 분석하는 통합 대화 분석모델을 제안한다. 사랑 도메인 데이터를 사용한 실험에서 제안 모델은 감정 58.08%, 화행 82.60%, 서술자 62.74%의 정확도(Accuracy)를 보였다.

  • PDF

Long Short-Term Memory를 이용한 통합 대화 분석 (Integrated Dialogue Analysis using Long Short-Term Memory)

  • 김민경;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.119-121
    • /
    • 2016
  • 최근 사람과 컴퓨터가 대화를 하는 채팅시스템 연구가 활발해지고 있다. 컴퓨터가 사람의 말에 적절한 응답을 하기 위해선 그 의미를 분석할 필요가 있다. 발화에 대한 의미 분석의 기본이 되는 연구로 감정분석과 화행분석이 있다. 그러나 이 둘은 서로 밀접한 연관이 있음에도 불구하고 함께 분석하는 연구가 시도 되지 않았다. 본 연구에서는 Long Short-term Memory(LSTM)를 이용하여 대화체 문장의 감정과 화행, 서술자를 동시에 분석하는 통합 대화 분석모델을 제안한다. 사랑 도메인 데이터를 사용한 실험에서 제안 모델은 감정 58.08%, 화행 82.60%, 서술자 62.74%의 정확도(Accuracy)를 보였다.

  • PDF

순서 정보 기반 악성코드 분류 가능성 (Malware Classification Possibility based on Sequence Information)

  • 윤태욱;박찬수;황태규;김성권
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1125-1129
    • /
    • 2017
  • LSTM(Long Short-term Memory)은 이전 상태의 정보를 기억하여 현재 상태에 반영해 학습하는 순환신경망(Recurrent Neural Network) 모델이다. 악성코드에서 선형적 순서 정보는 각 시점에서 호출되는 함수로서 정의 가능하다. 본 논문에서는 LSTM 모델의 이전 상태를 기억하는 특성을 이용하며, 시간 순서에 따른 악성코드의 함수 호출 정보를 입력으로 사용한다. 그리고 실험으로서 우리가 제시한 방법이 악성코드 분류가 가능함을 보이고 순서 정보의 길이 변화에 따른 정확률을 측정한다.

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

LSTM algorithm to determine the state of minimum horizontal stress during well logging operation

  • Arsalan Mahmoodzadeh;Seyed Mehdi Seyed Alizadeh;Adil Hussein Mohammed;Ahmed Babeker Elhag;Hawkar Hashim Ibrahim;Shima Rashidi
    • Geomechanics and Engineering
    • /
    • 제34권1호
    • /
    • pp.43-49
    • /
    • 2023
  • Knowledge of minimum horizontal stress (Shmin) is a significant step in determining full stress tensor. It provides crucial information for the production of sand, hydraulic fracturing, determination of safe mud weight window, reservoir production behavior, and wellbore stability. Calculating the Shmin using indirect methods has been proved to be awkward because a lot of data are required in all of these models. Also, direct techniques such as hydraulic fracturing are costly and time-consuming. To figure these problems out, this work aims to apply the long-short-term memory (LSTM) algorithm to Shmin time-series prediction. 13956 datasets obtained from an oil well logging operation were applied in the models. 80% of the data were used for training, and 20% of the data were used for testing. In order to achieve the maximum accuracy of the LSTM model, its hyper-parameters were optimized significantly. Through different statistical indices, the LSTM model's performance was compared with with other machine learning methods. Finally, the optimized LSTM model was recommended for Shmin prediction in the well logging operation.

통합 CNN, LSTM, 및 BERT 모델 기반의 음성 및 텍스트 다중 모달 감정 인식 연구 (Enhancing Multimodal Emotion Recognition in Speech and Text with Integrated CNN, LSTM, and BERT Models)

  • 에드워드 카야디;한스 나타니엘 하디 수실로;송미화
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.617-623
    • /
    • 2024
  • 언어와 감정 사이의 복잡한 관계의 특징을 보이며, 우리의 말을 통해 감정을 식별하는 것은 중요한 과제로 인식된다. 이 연구는 음성 및 텍스트 데이터를 모두 포함하는 다중 모드 분류 작업을 통해 음성 언어의 감정을 식별하기 위해 속성 엔지니어링을 사용하여 이러한 과제를 해결하는 것을 목표로 한다. CNN(Convolutional Neural Networks)과 LSTM(Long Short-Term Memory)이라는 두 가지 분류기를 BERT 기반 사전 훈련된 모델과 통합하여 평가하였다. 논문에서 평가는 다양한 실험 설정 전반에 걸쳐 다양한 성능 지표(정확도, F-점수, 정밀도 및 재현율)를 다룬다. 이번 연구 결과는 텍스트와 음성 데이터 모두에서 감정을 정확하게 식별하는 두 모델의 뛰어난 능력을 보인다.

Flood prediction in the Namgang Dam basin using a long short-term memory (LSTM) algorithm

  • Lee, Seungsoo;An, Hyunuk;Hur, Youngteck;Kim, Yeonsu;Byun, Jisun
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.471-483
    • /
    • 2020
  • Flood prediction is an important issue to prevent damages by flood inundation caused by increasing high-intensity rainfall with climate change. In recent years, machine learning algorithms have been receiving attention in many scientific fields including hydrology, water resources, natural hazards, etc. The performance of a machine learning algorithm was investigated to predict the water elevation of a river in this study. The aim of this study was to develop a new method for securing a large enough lead time for flood defenses by predicting river water elevation using the a long- short-term memory (LSTM) technique. The water elevation data at the Oisong gauging station were selected to evaluate its applicability. The test data were the water elevation data measured by K-water from 15 February 2013 to 26 August 2018, approximately 5 years 6 months, at 1 hour intervals. To investigate the predictability of the data in terms of the data characteristics and the lead time of the prediction data, the data were divided into the same interval data (group-A) and time average data (group-B) set. Next, the predictability was evaluated by constructing a total of 36 cases. Based on the results, group-A had a more stable water elevation prediction skill compared to group-B with a lead time from 1 to 6 h. Thus, the LSTM technique using only measured water elevation data can be used for securing the appropriate lead time for flood defense in a river.

LSTM-VAE를 활용한 기계시설물 장치의 이상 탐지 시스템 (Anomaly Detection System in Mechanical Facility Equipment: Using Long Short-Term Memory Variational Autoencoder)

  • 서재홍;박준성;유준우;박희준
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.581-594
    • /
    • 2021
  • Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.

에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측 (Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy)

  • 정호철;선영규;이동구;김수현;황유민;심이삭;오상근;송승호;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.134-142
    • /
    • 2019
  • 에너지인터넷 기술의 발전과 다양한 전자기기의 보급으로 에너지소비량이 패턴이 다양해짐에 따라 수요예측에 대한 신뢰도가 감소하고 있어 발전량 최적화 및 전력공급 안정화에 문제를 야기하고 있다. 본 연구에서는 고신뢰성을 갖는 수요예측을 위해 딥러닝 기법인 Convolution neural network(CNN)과 Bidirectional Long Short-Term Memory(BLSTM)을 융합한 1Dimention-Convolution and Bidirectional LSTM(1D-ConvBLSTM)을 제안하고, 제안한 기법을 활용하여 시계열 에너지소비량대한 소비패턴을 효과적으로 추출한다. 실험 결과에서는 다양한 반복학습 횟수와 feature map에 대해서 수요를 예측하고 적은 반복학습 횟수로도 테스트 데이터의 그래프 개형을 예측하는 것을 검증한다.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.