• 제목/요약/키워드: LSTM(Long Short Term Memory)

검색결과 523건 처리시간 0.024초

A Network Intrusion Security Detection Method Using BiLSTM-CNN in Big Data Environment

  • Hong Wang
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.688-701
    • /
    • 2023
  • The conventional methods of network intrusion detection system (NIDS) cannot measure the trend of intrusiondetection targets effectively, which lead to low detection accuracy. In this study, a NIDS method which based on a deep neural network in a big-data environment is proposed. Firstly, the entire framework of the NIDS model is constructed in two stages. Feature reduction and anomaly probability output are used at the core of the two stages. Subsequently, a convolutional neural network, which encompasses a down sampling layer and a characteristic extractor consist of a convolution layer, the correlation of inputs is realized by introducing bidirectional long short-term memory. Finally, after the convolution layer, a pooling layer is added to sample the required features according to different sampling rules, which promotes the overall performance of the NIDS model. The proposed NIDS method and three other methods are compared, and it is broken down under the conditions of the two databases through simulation experiments. The results demonstrate that the proposed model is superior to the other three methods of NIDS in two databases, in terms of precision, accuracy, F1- score, and recall, which are 91.64%, 93.35%, 92.25%, and 91.87%, respectively. The proposed algorithm is significant for improving the accuracy of NIDS.

투석혈관 수술시기 예측을 위한 인공지능 알고리즘 개발 (Developing an Artificial Intelligence Algorithm to Predict the Timing of Dialysis Vascular Surgery)

  • 김도형;김현숙;이선표;오인종;박승범
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.97-115
    • /
    • 2023
  • In South Korea, chronic kidney disease(CKD) impacts around 4.6 million adults, leading to a high reliance on hemodialysis. For effective dialysis, vascular access is crucial, with decisions about vascular surgeries often made during dialysis sessions. Anticipating these needs could improve dialysis quality and patient comfort. This study investigates the use of Artificial Intelligence(AI) to predict the timing of surgeries for dialysis vessels, an area not extensively researched. We've developed an AI algorithm using predictive maintenance methods, transitioning from machine learning to a more advanced deep learning approach with Long Short-Term Memory(LSTM) models. The algorithm processes variables such as venous pressure, blood flow, and patient age, demonstrating high effectiveness with metrics exceeding 0.91. By shortening the data collection intervals, a more refined model can be obtained. Implementing this AI in clinical practice could notably enhance patient experience and the quality of medical services in dialysis, marking a significant advancement in the treatment of CKD.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • 제13권1호
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

A machine learning informed prediction of severe accident progressions in nuclear power plants

  • JinHo Song;SungJoong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2266-2273
    • /
    • 2024
  • A machine learning platform is proposed for the diagnosis of a severe accident progression in a nuclear power plant. To predict the key parameters for accident management including lost signals, a long short term memory (LSTM) network is proposed, where multiple accident scenarios are used for training. Training and test data were produced by MELCOR simulation of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident at unit 3. Feature variables were selected among plant parameters, where the importance ranking was determined by a recursive feature elimination technique using RandomForestRegressor. To answer the question of whether a reduced order ML model could predict the complex transient response, we performed a systematic sensitivity study for the choices of target variables, the combination of training and test data, the number of feature variables, and the number of neurons to evaluate the performance of the proposed ML platform. The number of sensitivity cases was chosen to guarantee a 95 % tolerance limit with a 95 % confidence level based on Wilks' formula to quantify the uncertainty of predictions. The results of investigations indicate that the proposed ML platform consistently predicts the target variable. The median and mean predictions were close to the true value.

Relative humidity prediction of a leakage area for small RCS leakage quantification by applying the Bi-LSTM neural networks

  • Sang Hyun Lee;Hye Seon Jo;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1725-1732
    • /
    • 2024
  • In nuclear power plants, reactor coolant leakage can occur due to various reasons. Early detection of leaks is crucial for maintaining the safety of nuclear power plants. Currently, a detection system is being developed in Korea to identify reactor coolant system (RCS) leakage of less than 0.5 gpm. Typically, RCS leaks are detected by monitoring temperature, humidity, and radioactivity in the containment, and a water level in the sump. However, detecting small leaks proves challenging because the resulting changes in the containment humidity and temperature, and the sump water level are minimal. To address these issues and improve leak detection speed, it is necessary to quantify the leaks and develop an artificial intelligence-based leak detection system. In this study, we employed bidirectional long short-term memory, which are types of neural networks used in artificial intelligence, to predict the relative humidity in the leakage area for leak quantification. Additionally, an optimization technique was implemented to reduce learning time and enhance prediction performance. Through evaluation of the developed artificial intelligence model's prediction accuracy, we expect it to be valuable for future leak detection systems by accurately predicting the relative humidity in a leakage area.

딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측 (Flow rate prediction at Paldang Bridge using deep learning models)

  • 성연정;박기두;정영훈
    • 한국수자원학회논문집
    • /
    • 제55권8호
    • /
    • pp.565-575
    • /
    • 2022
  • 최근의 수자원공학 분야는 4차산업혁명과 더불어 비약적으로 발전된 딥러닝 기술을 활용한 시계열 수위 및 유량의 예측에 대한 관심이 높아지고 있다. 또한 시계열 자료의 예측이 가능한 LSTM 모형과 GRU 모형을 활용하여 수위 및 유량 예측을 수행하고 있지만 시간 변동성이 매우 큰 하천에서의 유량 예측 정확도는 수위 예측 정확도에 비해 낮게 예측되는 경향이 있다. 본 연구에서는 유량변동이 크고 하구에서의 조석의 영향이 거의 없는 한강의 팔당대교 관측소를 선택하였다. 또한, LSTM 모형과 GRU 모형의 입력 및 예측 자료로 활용될 유량변동이 큰 시계열 자료를 선택하였고 총 자료의 길이는 비교적 짧은 2년 7개월의 수위 자료 및 유량 자료를 수집하였다. 시간변동성이 큰 시계열 수위를 2개의 모형에서 학습할 경우, 2개의 모형 모두에서 예측되는 수위 결과는 관측 수위와 비교하여 적정한 정확도가 확보되었으나 변동성이 큰 유량 자료를 2개의 모형에서 직접 학습시킬 경우, 예측되는 유량 자료의 정확도는 악화되었다. 따라서, 본 연구에서는 급변하는 유량을 정확히 예측하기 위하여 2개 모형으로 예측된 수위 자료를 수위-유량관계곡선의 입력자료로 활용하여 유량의 예측 정확도를 크게 향상시킬 수 있었다. 마지막으로 본 연구성과는 수문자료의 별도 가공없이 관측 길이가 상대적으로 충분히 길지 않고 유출량이 급변하는 도시하천에서의 홍수예경보 자료로 충분히 활용할 수 있을 것으로 기대된다.

Evaluation of Recurrent Neural Network Variants for Person Re-identification

  • Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.193-199
    • /
    • 2017
  • Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.

에너지 인터넷에서 수요반응을 위한 인공지능 알고리즘 (AI Algorithm for Demand Response in Energy Internet)

  • 이동구;선영규;김수현;심이삭;황유민;김진영
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.89-90
    • /
    • 2019
  • 본 논문에서는, 에너지 인터넷에서 정밀한 수요반응을 위한 인공지능 알고리즘 모델을 제안한다. 제안하는 인공지능 모델은 시계열 전력사용량 데이터 처리를 위해 딥러닝 기반 long-short term memory (LSTM) 네트워크를 사용한다. 시뮬레이션 결과를 통해 제안한 시스템 모델의 전력사용량 예측 정확도를 확인하였다.

  • PDF

RNN을 활용한 도시철도 역사 부하 패턴 추정 (Estimation of Electrical Loads Patterns by Usage in the Urban Railway Station by RNN)

  • 박종영
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1536-1541
    • /
    • 2018
  • For effective electricity consumption in urban railway station such as peak load shaving, it is important to know each electrical load pattern by various usage. The total electricity consumption in the urban railway substation is already measured in Korea, but the electricity consumption for each usage is not measured. The author proposed the deep learning method to estimate the electrical load pattern for each usage in the urban railway substation with public data such as weather data. GRU (gated recurrent unit), a variation on the LSTM (long short-term memory), was used, which aims to solve the vanishing gradient problem of standard a RNN (recursive neural networks). The optimal model was found and the estimation results with that were assessed.

Industrial Process Monitoring and Fault Diagnosis Based on Temporal Attention Augmented Deep Network

  • Mu, Ke;Luo, Lin;Wang, Qiao;Mao, Fushun
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.242-252
    • /
    • 2021
  • Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.