• 제목/요약/키워드: LSE:Least square error

검색결과 18건 처리시간 0.023초

Comparison of various structural damage tracking techniques based on experimental data

  • Huang, Hongwei;Yang, Jann N.;Zhou, Li
    • Smart Structures and Systems
    • /
    • 제6권9호
    • /
    • pp.1057-1077
    • /
    • 2010
  • An early detection of structural damages is critical for the decision making of repair and replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has received considerable attention recently. The traditional time-domain analysis techniques, such as the least square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two approaches have been extended to cover the general case where some of the external excitations (inputs) are not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking of structures when some of the acceleration responses are not measured and the external excitations are not available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy, convergence and efficiency, for damage identification of structures based on experimental data obtained through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural damages will be demonstrated and compared.

PAPR reduction and Pre-distortion techniques against Non-linear Distortion of Satellite WiBro

  • ;서명환;고경완;이병섭
    • 한국위성정보통신학회논문지
    • /
    • 제3권2호
    • /
    • pp.18-25
    • /
    • 2008
  • A major drawback of Orthogonal Frequency Division Multiplexing (OFDM) system is high peak-to-average power ratio (PAPR) of the transmitted signal which introduces inevitable non-linear distortion in the transmission due to the amplifier non-linear property. This causes both in-band distortion and out of band spectrum re-growth. A polynomial based pre-distortion is estimated using the non-linear and inverse non-linear polynomial achieved through the Least Square Error (LSE) method. A new technique of PAPR reduction called 'Phase Realignment' (PR) is proposed which has a optimal effect in improving the BER performance as well as considerable reduction in the PAPR. In this paper we used the PR method along with the 'Peak Clipping' (PC) method is used before the pre-distortion to remove the high peak present in the non constant amplitude of the OFDM signal responsible to drive the amplifier in near saturation region for better performance of the system.

  • PDF

다중로봇 협업감시 시스템에서 트리 탐색 기법을 활용한 다중표적 위치 좌표 추정 (Location Estimation for Multiple Targets Using Tree Search Algorithms under Cooperative Surveillance of Multiple Robots)

  • 박소령;노상욱
    • 한국통신학회논문지
    • /
    • 제38A권9호
    • /
    • pp.782-791
    • /
    • 2013
  • 이 논문에서는 적외선 센서를 가진 다수의 감시 로봇에서 획득한 정보를 융합하여 분산되어있는 표적의 위치 좌표를 추정하는 기법을 제안한다. 방위각(azimuth)과 표적을 대응시키는 방법으로 최대-우도(maximum likelihood), 깊이-우선(depth-first), 너비-우선(breadth-first) 트리 탐색(tree search) 기법을 각각 적용하며, 후보선정 및 가지치기(pruning)에 사용하는 정보는 표적의 방위각과 적외선 센서 화면에서 표적의 픽셀 수만을 활용한다. 방위각과 표적이 대응된 후에는 하나의 표적을 가리키는 방위각들에 최소 제곱 오차(least square error) 알고리듬을 적용하여 최적 교점을 구함으로써 표적의 위치 좌표를 추정한다. 제안한 세 가지 탐색 기법 및 위치 추정 기법의 좌표 추정성능, 복잡도, 오차 성능을 모의실험으로 제시하여 성능을 비교한다.

Rooftop 평면 추정에 의한 3차원 건물 모델 발생 (Generation of 3D Building Model Using Estimation of Rooftop Surface)

  • 강연욱;우동민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2921-2923
    • /
    • 2005
  • This paper presents to generate 3D building model using estimation of rooftop surface after 3D line segment extraction using hybrid stereo matching techniques in terms of the co-operation of area-based stereo and feature-based stereo. we first performed a junction extraction from 3D line segment data which was obtained by stereo images, and finally generated building's reliable rooftop surface model using LSE(Least Square Error) method after creating surfaces by grouped and fixed junction points. we generated synthetic images for experimentation by photo-realistic simulation on Avenches data set of Ascona aerial images.

  • PDF

로보스트 방법을 이용한 EEG 신호의 전력밀도 추정 (Power spectrum estimation of EEG signal using robust method)

  • 김택수;허재만;김종순;유선국;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.736-740
    • /
    • 1991
  • EEG(Electroencephalogram) background signals can be represented as the sun of a conventional AR(Autoregressive) process and an innovation process, or a prediction error process. We have seen that conventional estimation techniques. such as least square estimates(LSE) or Gaussian maximum likelihood estimates(MLE-G) are optimal when the innovation process satisfies the Gaussian or presumed distribution. But when the data are contaminated by outliers, or artifacts, these assumptions are not met and conventional estimation techniques can badly fall and be strongly biased. It is known that EEG can be easily affected by artifacts. So we suggest a robust estimation technique which considerably performs well against those artifacts.

  • PDF

Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Computers and Concrete
    • /
    • 제5권1호
    • /
    • pp.37-60
    • /
    • 2008
  • Structural health monitoring of existing infrastructure is currently an important field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical and important structures. The paper outlines two methods of system identification of beam-like reinforced concrete structures representing bridges, through static measurements, in a distributed damage scenario. The first one is similar to the stiffness method, re-cast and the second one to flexibility method. A least square error (LSE) based solution method is used for the estimation of flexural rigidities and damages of simply supported, cantilever and propped cantilever beam from the measured deformation values. The performance of both methods in the presence of measurement errors is demonstrated. An experiment on an un-symmetrically damaged simply supported reinforced concrete beam is used to validate the developed method. A method for damage prognosis is demonstrated using a generalized, indeterminate, propped cantilever beam.

독립성분해석 기법과 인근평균 및 정규화를 이용한 영상분류 방법 (Image classification method using Independent Component Analysis, Neighborhood Averaging and Normalization)

  • 홍준식;유정웅;김성수
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.389-394
    • /
    • 2001
  • 본 논문에서는 독립 성분 해석(Independent Component Analysis, ICA) 기법과 인근 평균 및 정규화를 이용한 영상 분류 방법을 제안하였다. ICA에 잡음을 주어 영상을 분류하였을 때, 잡음에 대한 강인성을 증가시키기 위하여, 제안된 인근 평균 및 정규화를 전처리로 적용하였다. 제안된 방법은 전처리 없이 ICA에 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 잡음에 대한 강인성을 증가시키는 것을 모의 실험을 통하여 확인하였다.

  • PDF

앙상블 구성을 이용한 SVM 분류성능의 향상 (Improving SVM Classification by Constructing Ensemble)

  • 제홍모;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.251-258
    • /
    • 2003
  • Support Vector Machine(SVM)은 이론상으로 좋은 일반화 성능을 보이지만, 실제적으로 구현된 SVM은 이론적인 성능에 미치지 못한다. 주 된 이유는 시간, 공간상의 높은 복잡도로 인해 근사화된 알고리듬으로 구현하기 때문이다. 본 논문은 SVM의 분류성능을 향상시키기 위해 Bagging(Bootstrap aggregating)과 Boosting을 이용한 SVM 앙상블 구조의 구성을 제안한다. SVM 앙상블의 학습에서 Bagging은 각각의 SVM의 학습데이타는 전체 데이타 집합에서 임의적으로 일부 추출되며, Boosting은 SVM 분류기의 에러와 연관된 확률분포에 따라 학습데이타를 추출한다. 학습단계를 마치면 다수결 (Majority voting), 최소자승추정법(LSE:Least Square estimation), 2단계 계층적 SVM등의 기법에 개개의 SVM들의 출력 값들이 통합되어진다. IRIS 분류, 필기체 숫자인식, 얼굴/비얼굴 분류와 같은 여러 실험들의 결과들은 제안된 SVM 앙상블의 분류성능이 단일 SVM보다 뛰어남을 보여준다.