• 제목/요약/키워드: LS-DYNA

검색결과 436건 처리시간 0.022초

알루미늄 2519 판재의 충격저항성 평가에 대한 수치 해석적 연구 (A Numerical Study on the Shock Resistance Test of Aluminium 2519 Plate)

  • 구만회;우호길
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.11-20
    • /
    • 2004
  • In this paper, the acceptance criteria(Striking Velocities) for the A12519 weldments have been developed. Dynamic impact simulation of A12519 plate was achieved by using LS-DYNA, and predict the projectile velocity and the crack length. Also, Ballistic impact tests of A12519 plate have been performed, and compared with analysis results. Critical velocities of A12519 plate were acquired respectively, and striking velocities of A12519 weldments were calculated. Present work data will be used by basic data in ballistic impact test for A12519 weldments.

Sled Test용 Steel Bar Breaking System의 설계 (Design of a Steel Bar Breaking System in a Sled Test Facility)

  • 조인용;이형주;이권희;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.770-775
    • /
    • 2001
  • Steel bar breaking system is a component of a sled test system for automobile crashworthiness. It is a recent idea for the sled test. In a sled test, a crash pulse is given as a input made from a real test. The steel bar breaking system is designed to generate a certain crash pulse. Orthogonal arrays from design of experiments (DOE) are employed. The factors of the array are panel thickness and the number of steel bars, and the levels are candidate values of them. A simulation is utilized for the crash analysis. A commercial system called LS/DYNA3D is adopted. A test system is designed based on the results.

  • PDF

리드용 와이어의 Von Mises 응력 최소화를 위한 최적설계 (The Optimum Design for Minimizing von Mises Stress of Lead Wire)

  • 박창형;조성진;한승철;김진호
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.119-126
    • /
    • 2017
  • High-precision wire is one of the most important components of lead production. However, no studies have been performed on the dimensional tolerance of these wires, and their capabilities have been deduced through trial and error. Therefore, PIANO, a commercial PIDO tool, was used to systematically determine the optimal parameters for stress minimization. The values obtained from the optimum design were modeled and analyzed using LS-Dyna, a finite element analysis program. Maximum stress was reduced by about 10% compared to its initial values, and the wire now satisfies dimensional tolerance ($10{\mu}m$).

Characteristics of the Warm Deep Drawability of a Transformation-Induced Plasticity Steel Sheet

  • 서대교;장성호;공경환
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.221-221
    • /
    • 1999
  • Warm deep drawability in a square cup drawing was investigated using a newly developed high-strength steel sheet with retained austenite that was transformed into martensite during formation. For this investigation, six different temperatures between room temperature and 250℃, and five different drawing ratios ranging from 2.2 to 2.6 were considered. The results showed that the maximum drawing force and the drawing depth were affected by the change in temperature, and a more stable thickness strain distribution was observed at elevated temperatures. However, blue shortness occurred at over 200℃. FEM analysis using the LS-DYNA code was used to compare the experimental results with the numerical results for the thickness strain distribution.

발사충격을 고려한 수동충격저감기의 위상최적설계 (Topology Optimization of Passive Shock Isolator with Application to Ballistic Shock)

  • 왕세명;임국희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.406-410
    • /
    • 2006
  • Topology optimization of improved passive shock isolator by controlling its force-deflection relation is proposed. And the final design which is optimized using topology optimization is obtained using shape optimization. The proposed methods are applied to a numerical example using two dimensional-axisymmetric condition. And the performance of finally optimized design is verified through transient analysis using LS-DYNA. The ballistic shock isolator model is developed as a result of topology optimization. The optimized design has more improved shock absorbing capability comparing to the linear shock isolator by about 20%.

  • PDF

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels

  • Mussa, Mohamed H.;Mutalib, Azrul A.;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.607-620
    • /
    • 2020
  • A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.

승원 안전을 고려한 승용차 A-Pillar Trim의 최적 설계 (Optimum Design of A-Pillar Trim for Occupant Protection)

  • 김형곤;강신일
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.99-106
    • /
    • 2001
  • NHTSA has been conducting biomechanical studies to reduce inujuries sustained sustained during automotive collision. Furthermore, NHTSA added the regulation to the FMVSS 201, limiting the equivalent HIC(Head Injury Criterion) value under 1000. In the presont work, a methodology was developed for the optimum design of the A-pillar trim with rib-structures. The design variables for the rib-strucrures were the transverse spacing, the longitudinal spacing, and the thickness. The required sets of the design varibles were decided based on the design of experiments. The head impact simulations were carried out using the LS-DYNA3D, and the HIC(d) values were computed using the resulrs of the head impact simulation. The objective function was constructed using the response surface methed (RSM). When the obtained optimum values were not inside the region of interest, the design proceduers were repeated by changing the region of interest. Finally, an A-pillar trim with rib-structures, which resulred in HIC(d) value under 850 for 15 mph head-trim impact, was developed.

  • PDF

평판에 충동하는 사각봉의 소성응력해석 (An Analysis of Plastic Stress in Square Bar Impacting Plate)

  • 김기선;조재웅;최두석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.198-204
    • /
    • 2004
  • Dynamic fracture is investigated in plate applied by impacting bar. Numerical simulations of the experiments are made by using a finite element method(FEM) code, LS-DYNA. The eroding surface-to-surface contact allows between impacting bar and impacted plate. The occurrence of hourglass deformations in an analysis can invalidate results and hourglass energy is minimized to obtain the good accuracy of result. Total, internal and kinetic energies, von Mises plastic stress and X,Y,Z velocities of impacting bar are analyzed in this study.

보행자보호를 위한 다리기준의 교통안전 효과평가 (Assessing Traffic Safety Benefits of Technical Regulation for Pedestrian Leg)

  • 오철;김범일;강연수;신문균
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.1-9
    • /
    • 2007
  • This study proposes a methodology to assess the traffic safety benefits of technical regulation for pedestrian leg. Traffic safety benefit is defined as the injury reduction in this study. Actual accident analysis and simulation experiments using LS-Dyna3d are conducted to establish statistical models for developing the methodology. The relationship between collision speed and parameters of the regulation is explored. An application example of the proposed methodology is also presented for more comprehensive understanding. It is believed that the proposed methodology would be greatly utilized in developing various technologies and policies to protect pedestrian.

Structural Evaluation on the Impact of a Radioisotope Package

  • Chung, Sung-Hwan;Lee, Heung-Young;Ku, Jeong-Hoe;Seo, Ki-Seog;Han, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.462-469
    • /
    • 1998
  • A package to transport high-level radioactive materials is required to withstand normal transport and hypothetical accident conditions pursuant to the IAEA and domestic regulations. The package should maintain the structural safety not to release radioactive material in any condition. The structural safety of the package has been evaluated by tests using proto-type or scaled-down models, however, the method by analysis is gradually utilized due to recent advancement of computers and computer codes. In this paper, to evaluate the structural safety of a radioisotope package of the KAERI, the three dimensional impact analyses under 9m free drop and 1m puncture were performed with an explicit finite-element code, the LS-DYNA3D code. The maximum stress intensity on each part was calculated and the structural safety of the package was evaluated in accordance with the regulations.

  • PDF