• 제목/요약/키워드: LQR control

검색결과 259건 처리시간 0.028초

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.

SSI effects on seismic behavior of smart base-isolated structures

  • Shourestani, Saeed;Soltani, Fazlollah;Ghasemi, Mojtaba;Etedali, Sadegh
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.161-174
    • /
    • 2018
  • The present study investigates the soil-structure interaction (SSI) effects on the seismic performance of smart base-isolated structures. The adopted control algorithm for tuning the control force plays a key role in successful implementation of such structures; however, in most studied carried out in the literature, these algorithms are designed without considering the SSI effect. Considering the SSI effects, a linear quadratic regulator (LQR) controller is employed to seismic control of a smart base-isolated structure. A particle swarm optimization (PSO) algorithm is used to tune the gain matrix of the controller in both cases without and with SSI effects. In order to conduct a parametric study, three types of soil, three well-known earthquakes and a vast range of period of the superstructure are considered for assessment the SSI effects on seismic control process of the smart-base isolated structure. The adopted controller is able to make a significant reduction in base displacement. However, any attempt to decrease the maximum base displacement results in slight increasing in superstructure accelerations. The maximum and RMS base displacements of the smart base-isolated structures in the case of considering SSI effects are more than the corresponding responses in the case of ignoring SSI effects. Overall, it is also observed that the maximum and RMS base displacements of the structure are increased by increasing the natural period of the superstructure. Furthermore, it can be concluded that the maximum and RMS superstructure accelerations are significant influenced by the frequency content of earthquake excitations and the natural frequency of the superstructure. The results show that the design of the controller is very influenced by the SSI effects. In addition, the simulation results demonstrate that the ignoring the SSI effect provides an unfavorable control system, which may lead to decline in the seismic performance of the smart-base isolated structure including the SSI effects.

Control Of Flexible Multi-Body System

  • Cho, Sung-Ki;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2566-2569
    • /
    • 2003
  • An alternative optimal control law formulation is introduced and compared with two different control law, a conventional linear quadratic regulator and the control law based on game theory. This formulation eliminates the undesired modes of the system by the projection of a controller onto the subspace orthogonal to that of the bad modes. In conventional LQR control law, the control performance can be improved only by using proper weighting matrices in performance index, normally, with high cost. The control law formulation by game theory may provide various ways to obtain the desired performance. The control law modified by the elimination of bad modes provides efficient ways to get rid of an undesired performance since it eliminates the exact modes which cause the bad control performance.

  • PDF

Control of the flexible system under irregular disturbance by using of 『random gain』

  • Cho, Yun-Hyun;Yang, Jae-Hyuk;Kim, Dae-Jung;Park, Sang-Tae;Chung, Jae-Wook;Hoon Heo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.435-439
    • /
    • 1998
  • A control strategy for flexible structure under irregular disturbance by using of$\boxDr$random gain$\boxUl$is developed and implemented. System equation is transformed to stochastic domain by F-P-K approach from physical domain. A controller is designed in the stochastic domain, accordingly system is controlled by$\boxDr$random gain$\boxUl$in time domain. In the paper, a new control technique is successfully employed for flexible system under white noise, and the result is verified by Monte-Carlo simulation and compared with the performance via LQR controller.

  • PDF

퍼지관리제어기법을 이용한 지진응답의 능동제어 (Active Control of Earthquake Responses Using Fuzzy Supervisory Control Technique)

  • 박관순;고현무;옥승용
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.75-81
    • /
    • 2001
  • 지진하중을 받는 구조물의 능동제어를 위한 퍼지관리제어기법(fuzzy supervisory control technique)에 관하여 연구하였다. 제시하는 제어기법은, 구조물에 발생하는 변위 및 속도 등의 정보를 이용하여 퍼지추론과정을 거쳐서 구조물의 상태를 파악함으로써 기설계된 제어이득들을 실시간으로 관리 및 조정한다. 알고리즘의 검증을 위하여 지진하중을 받는 3자유도 구조물에 대하여 수치모사를 수행하여 정적이득을 갖는 LQR제어기와 비교하였으며, 해석결과 제시한 제어기는 지진응답의 제어에 매우 효과적임을 알 수 있다.

  • PDF

반작용휠을 이용한 위성체 자세제어 연구 (STUDY ON THE ATTITUDE CONTROL OF SPACECRAFT USING REACTION WHEELS)

  • 두주영;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.245-250
    • /
    • 1998
  • 위성 체의 자세결정과 자세제어는 인공위성의 임무수행능력을 결정하는 중요한 요인으로 그 정밀도를 탑재된 센서와 자세제어 구동기의 성능에 의해 결정된다. 본 연구는 비선 형 제어이론과 선형 제어이론을 적용하여 4개의 반작용 휠을 사용하는 3축 안정화 지구지향위성의 자세 제어법칙을 디자인하고 작동범위의 크기에 따른 제어 방법의 적합성을 비교하였다. 또한 휠 속도 한계를 초과하는 것을 방지하기 위해 자기 토커를 사용하여 휠모멘텀을 제거할 수 있음을 확인하였다. 이 때 반작용 휠은 전력소모를 최소화시키도록 배치된 경우로, 자기 토커는 3축 직교 자기 토커로 가정하였다. 휠 속도를 제어하는 휠 토커의 크기는 한계 치를 초과하지 않도록 디자인하였다.

  • PDF

끝단이 탄성 지지된 강체판의 최적진동제어 (Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges)

  • 이성기;윤신일;한상보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

Attitude control of foil-catamaran

  • Rhee, Key-Pyo;Lee, Gyoung-Jung;Lee, Sim-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.150-153
    • /
    • 1995
  • In this paper the attitude control system is developed for longitudinal motion of Foil-Catamaran in regular waves with all-movable foils which attached to fore and after part of the ship and verified the system by theoretical calculation and model-tests. The linearized equations of motion of the ship is employed to apply the linear control theories, the PID control and the LQR. The strip method was used to calculate hydrodynamic coefficients and wave exciting forces of the demi hull, and unsteady hydrodynamic forces of foils are considered by using the result of Wu(1972). About 40-60% of motions is reduced in experiments. The control system described in this paper is able to extended to 6-DOF motions or control in irregular wave with trivial modification. And it is applicable to hull shape development for better seakeeping performance and to determine the size and the position of hydrofoils for the attitude control.

  • PDF

SDRE 기법을 이용한 이륜 밸런싱 로봇의 비선형 최적제어 (SDRE Based Nonlinear Optimal Control of a Two-Wheeled Balancing Robot)

  • 김상태;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1037-1043
    • /
    • 2011
  • Two-wheeled balancing mobile robots are currently controlled in terms of linear control methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and greatly influence the overall driving performance. This paper addresses the SDRE nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the SDRE control outperforms LQR in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the SDRE control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly contributes to the driving performance and stability.

자율 주행 헬리콥터 시스템의 지능 힘제어 응용 (Intelligent Force Control Ap plication of an Autonomous Helicopter System)

  • 엄일용;정슬
    • 대한임베디드공학회논문지
    • /
    • 제6권5호
    • /
    • pp.303-309
    • /
    • 2011
  • In this paper, an intelligent force control technique is applied to an autonomous helicopter. Although most research on the autonomous helicopter system is about navigation and control, force control of an autonomous helicopter system is quite new and not presented yet. After controlling the position of the helicopter by the LQR method, force control is applied. The adaptive impedance force control algorithm is introduced and tested to regulate the desired force under unknown location and stiffness of the environment. To compensate for uncertainty from outer disturbance, a neural network is added to form an intelligent force control framework. Simulation studies show that the proposed force control algorithm works well.