• 제목/요약/키워드: LQR 제어 시스템

검색결과 126건 처리시간 0.024초

다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어 (CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example)

  • 이병수
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.

6-자유도 쿼드로터 무인항공기의 모델링 및 유도기법 설계 (System Modeling and Waypoint Guidance Law Designing for 6-DOF Quadrotor Unmanned Aerial Vehicle)

  • 이상현;김유단
    • 한국항공우주학회지
    • /
    • 제42권4호
    • /
    • pp.305-316
    • /
    • 2014
  • 항공전자 장비들의 급속한 발전으로 인해 무인항공기의 크기가 소형화 되고 있으나, 무인항공기에 대해 주어지는 임무는 더욱 정확하고 복잡해지고 있다. 정지비행이 가능하고, 간단한 기계적 메커니즘을 가진 쿼드로터는 이 같은 환경에서 활동도가 점차 증가하고 있다. 그러나 쿼드로터는 구조 특성에 따라 출력의 개수보다 입력의 개수가 작은 under actuated 시스템이므로, 쿼드로터 제어에 큰 제약이 따른다. 본 논문에서는 이와 같은 쿼드로터의 단점을 해결하기 위해서 4개의 원동기 외에 2개의 추가적인 원동기를 더 부착한 모델을 제안하여, 입력의 개수와 출력의 개수가 같은 fully actuated 시스템을 구현하도록 한다. 제안한 쿼드로터 모델의 제어기를 설계하기 위해 궤환선형화 기법을 적용하였다. 수치 시뮬레이션을 수행하여 제안한 모델과 설계된 제어기의 성능을 검증하였다.

MR 유체와 압전스택을 특징으로하는 새로운 형태의 능동 엔진마운트 시스템 (A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack)

  • 이동영;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.444-449
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) and presented in time domain.

  • PDF

MR 유체와 압전스택을 특징으로 하는 새로운 형태의 능동 엔진마운트 시스템 (A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack)

  • 이동영;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.583-590
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) and presented in time domain.

차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계 (Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution)

  • 김현기;이동진;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.

PLL Equivalent Augmented System Incorporated with State Feedback Designed by LQR

  • Wanchana, Somsak;Benjanarasuth, Taworn;Komine, Noriyuki;Ngamwiwit, Jongkol
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.161-169
    • /
    • 2007
  • The PLL equivalent augmented system incorporated with state feedback is proposed in this paper. The optimal value of filter time constant of loop filter in the phase-locked loop control system and the optimal state feedback gain designed by using linear quadratic regulator approach are derived. This approach allows the PLL control system to employ the large value of the phase-frequency gain $K_d$ and voltage control oscillator gain $K_o$. In designing, the structure of phase-locked loop control system will be rearranged to be a phase-locked loop equivalent augmented system by including the structure of loop filter into the process and by considering the voltage control oscillator as an additional integrator. The designed controller consisting of state feedback gain matrix K and integral gain $k_1$ is an optimal controller. The integral gain $k_1$ related to weighting matrices q and R will be an optimal value for assigning the filter time constant of loop filter. The experimental results in controlling the second-order lag pressure process using two types of loop filters show that the system response is fast without steady-state error, the output disturbance effect rejection is fast and the tracking to step changes is good.