• 제목/요약/키워드: LQG/LTR Controller

검색결과 66건 처리시간 0.027초

유연링크 로봇의 특이섭동 모델 최적 제어

  • 한기봉;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.256-261
    • /
    • 1995
  • To improve the performance of the robots they must be built ever lighter, which will lead to flexibility of the links. The full order of the flexible link manipulator dynamic system does not allow the determination of a feedback linearization control as for flexible link manipulator regard low mode. In this paper, this drawback is overcome by LQG/LTR controller which is designed bya corrected reduced modle based on the singular perturbation method.

  • PDF

LSDP를 이용한 탐색기 주사루프의 $H_{\infty}$ 제어 ($H_{\infty}$ Control of Seeker Scan-Loop using LSDP)

  • 이호평;송창섭
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.78-86
    • /
    • 1995
  • $H_{\infty}$ Controller of seeker scan-loop is designed using LSDP proposed by McFarlane. The performance and robustness of $H_{\infty}$ controller are analyzed using robustness theorems by Lehtomaki and compared with those of the LQG/LTR controller. Especially, structured singular value .mu. -test of Doyle is used to evaluate robust performance of seeker scan-loop. It is demonstated that seeker scan-loop by $H_{\infty}$ controller is very robust to model uncertainties described by additive and multiplicative perturbations.

  • PDF

수중운동체의 심도제어를 위한 제어기 설계 (Controller design for depth control of vehicle under seawater)

  • 이만형;박경철;곽한우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.516-521
    • /
    • 1993
  • In order to hold a underwater vehicle at a depth, we can modulate buoyancy that acts on the underwater vehicle. In this research, by using a ballon, we was able to generate buoyancy that could control depth in which vehicle was operate. And in order to control flux of air that was flowed in balloon, we used solenoid valve, relief valve and so on. We derived differential equations of volume of balloon, pressure of inside of balloon, dynamic of underwater vehicle, and air flux for the simulation and linearized these differential equation. So we designed LQG/LTR controller, and applied the controller to nonlinear system. Through the simulation, we compares the nonlinear system with the linear system and investigated the operation of solenoid valve.

  • PDF

강인한 2자유도 다변수 보일러-터빈 시스템의 설계 (A Design on Robust Two-Degree-of-Freedom Multivariable Boiler-Turbine System)

  • 황창선;김동완;정호성;이두영;조규열;남경원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.670-672
    • /
    • 1995
  • This paper deals with the robust two-degree-of-freedom multivariable control system using $H_{2}/H{\infty}$optimization method which can achieve the robust stability and the robust performance, simultaneously. The feedback controller can obtain the robust stability property. The feedforward controller can obtain the robust performance property under modelling error. The robust two-degree-of-freedom multivariable control system is applied to the nonlinear multivariable boiler-turbine system. The validity of the proposed method is verified though being compared with LQG/LTR design method.

  • PDF

유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조 (Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm)

  • 김기범;박승민;김인수
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.

부하 변동 공압계의 모델 기준 적응제어 (Model Reference Adaptive Control of the Pneumatic System with Load Variation)

  • 오현일;김인수;김기범
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, a model reference adaptive control (MRAC) scheme is applied for the precise and robust motion control of a pneumatic system with load variation. The reference model for MRAC is designed systematically using linear quadratic Gaussian control with loop transfer recovery (LQG/LTR). The sigmoid function of inverse velocity is used to compensate for the nonlinear friction force between the sliding parts. The experimental results show that MRAC effectively overcame the limit of the PID controller when there was unknown disturbance, including abrupt load variation and model uncertainty in the pneumatic control system.