• Title/Summary/Keyword: LPS-MAPK pathway

Search Result 96, Processing Time 0.029 seconds

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

Anti-inflammatory effect of Sihosogan-tang via inhibition of NF-κB and MAPK cascade (NF-κB와 MAPK억제를 통한 시호소간탕(柴胡疏肝湯)의 항염증효과)

  • Hyo Jeong Jin;Sang Mi Park;Ye Lim Kim;Sung Hui Byun;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.2
    • /
    • pp.99-109
    • /
    • 2023
  • Objectives : Sihosogan-tang (SST) is one of the traditional herbal formula and also one of the Korean medical insurance medicines. It commonly used in the treatment of hepatitis, chronic gastritis, intercostal neuralgia, pleurisy, and depression in East Asia. In the present study, we have demonstrated the anti-inflammatory effects of SST in macrophage cell line. Methods : To investigate mechanism of the anti-inflammatory effect of SST, we examined the productions of nitric oxide (NO) and pro-inflammatory cytokines, and the expressions of inducible NO synthase (iNOS), nuclear factor-κ B (NF-κB) and mitogen-activated protein kinase (MAPK) on RAW 264.7 cells activated by LPS. Results : SST significantly inhibited the expression of iNOS increased by LPS, and also significantly inhibited the production of NO. In addition, SST significantly inhibited pro-inflammatory cytokines such as TNF- α and interleukines. SST inhibited the expression of NF-κB and MAPK activation. Conclusions : These results suggest that SST ameliorates inflammatory response in LPS-activated RAW 264.7 cells through the inhibition of the NF-κB and MAPK pathway. Therefore, this study supplies objective evidence for the anti-inflammatory effect of SST.

Comparison of Anti-Inflammation Effects of Specimens Before and After the Oil Extraction of Raphanus sativus L. Seed in RAW 264.7 Macrophage Activated by LPS

  • Sunyoung Park;Dahyun Mun;Gunwoo Lee;Youngsun Kwon;Hye-yeon Kang;Jeom-Yong Kim
    • CELLMED
    • /
    • v.13 no.6
    • /
    • pp.7.1-7.6
    • /
    • 2023
  • Raphanus sativus L. has been reported to have anti-inflammatory and anti-tumor activity. However, the anti-inflammatory effect and mechanism of action of the Raphanus sativus L. seeds (RSS) with or without oil are still unknown. This study was undertaken to investigate the in-vitro anti-inflammatory effect with or without oil in the RSS on RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Results showed the suppressed LPS-induced secretion of pro-inflammatory mediators such as nitric oxide (NO), inflammatory cytokine (IL-6, TNF-α). Additionally, a decrease in protein expression of iNOS was observed, but nuclear translocation of NF-κB p65 was not inhibited. To elucidate the underlying mechanism of the anti-inflammatory effect of RSS, the involvement of mitogen-activated protein kinase (MAPK) signaling pathways was examined. We also found that RSS blocked LPS-induced phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) signaling but did not affect the phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2. These results suggest that RSS may have potential as an anti-inflammatory agent through the inhibition of LPS-induced inflammatory cytokine production via regulation of the JNK pathway.

Anti-oxidant and Anti-inflammatory Effects of Ethanol Extracts from Leonurus japonicus Houtt. on LPS-induced RAW 264.7 Cells (익모초 에탄올 추출물의 항산화 및 항염증 활성)

  • Choi, You-Na;Choi, Yu-Kyung;Nan, Li;Choo, Byung-Kil
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.659-677
    • /
    • 2020
  • Leonurus japonicus (L. japonicus) Houtt., a biennial plant in the Lamiaceae family is broadly distributed in Asia such as Korea, China, Japan. The aerial part of L. japonicus is used as a traditional medicine to treat uterine disease including dysmenorrhea, amenorrhea, sterility. In this study, we examined the antioxidant and anti-inflammatory effects of L. japonicus ethanol extracts. The antioxidant activity of L. japonicus was measured by total polyphenol and flavonoid content, and DPPH, ABTS scavenging, reducing power activity, and intracellular ROS expression assay. The anti-inflammatory effects were measured by nitric oxide (NO), cytokines (TNF-α and IL-1β) production and inflammatory protein expression in LPS-induced RAW 264.7 cells. Total polyphenol and flavonoid content of L. japonicus were 51.40 ± 0.47 mg of gallic acid equivalents/g and 73.28 ± 0.10 mg of rutin equivalents/g respectively. DPPH, ABTS radical scavenging activity and reducing power activity tended to increase concentration-dependent and treatment L. japonicus with 400 ㎍/mL reduced ROS production by 69.5%. Furthermore, L. japonicus inhibited NO, TNF-α and IL-1β production in a concentration-dependant manner and reduced the expression levels of inflammatory proteins via regulating NF-κB, MAPK pathway. Therefore, we suggest that L. japonicus could be a natural antioxidants and medicinal source to treat oxidative stress and inflammation-related disease.

Genomewide Expression Profile of Forsythia Suspensa on Lipopolysaccaride-induced Activation in Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Microglia, which is the primary immune effector cells in the central nervous system, constitutes the first line of defense against infection and injury in the brain. The goal of this study was to determine the protective (anti-inflammation) mechanisms of forsythia suspense (FS) on LPS-induced activation of BV-2 microglial cells. The effects of FS on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100mm dish $(1{\times}10^7/dish)$ for 24hr and then pretreated with $1{\mu}g/mL$ FS or left untreated for 30 min. Next, $1{\mu}g/mL$ LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min, 1hr, and 3hr. The gene expression profiles of the BV-2 microglial cells varied depending on the FS. The oligonucleotide microarray analysis revealed that MAPK pathway-related genes such as Mitogen activated protein kinase 1 (Mapk1), RAS protein activator like 2 (Rasal2), and G-protein coupled receptor 12 (Gpr12) and nitric oxide biosynthesis-related genes such as nitric oxide synthase 1 (neuronal) adaptor protein (Nos1ap), and dimethylarginine dimethylaminohydrolase 1 (Ddah1) were down regulated in FS-treated BV-2 microglial cells. FS can affect the MAPK pathway and nitric oxide biosynthesis in BV-2 microglial cells.

Ovalbumin Hydrolysates Inhibit Nitric Oxide Production in LPS-induced RAW 264.7 Macrophages

  • Kim, Hyun Suk;Lee, Jae Hoon;Moon, Sun Hee;Ahn, Dong Uk;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.274-285
    • /
    • 2020
  • In this study, ovalbumin (OVA) hydrolysates were prepared using various proteolytic enzymes and the anti-inflammatory activities of the hydrolysates were determined. Also, the potential application of OVA as a functional food material was discussed. The effect of OVA hydrolysates on the inhibition of nitric oxide (NO) production was evaluated via the Griess reaction, and their effects on the expression of inducible NO synthase (inducible nitric oxide synthase, iNOS) were assessed using the quantitative real-time PCR and Western blotting. To determine the mechanism by which OVA hydrolysates activate macrophages, pathways associated with the mitogen-activated protein kinase (MAPK) signaling were evaluated. When the OVA hydrolysates were added to RAW 264.7 cells without lipopolysaccharide (LPS) stimulation, they did not affect the production of NO. However, both the OVA-Protex 6L hydrolysate (OHPT) and OVA-trypsin hydrolysate (OHT) inhibited NO production dose-dependently in LPS-stimulated RAW 264.7 cells. Especially, OHT showed a strong NO-inhibitory activity (62.35% at 2 mg/mL) and suppressed iNOS production and the mRNA expression for iNOS (p<0.05). Also, OHT treatment decreased the phosphorylation levels of Jun amino-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK) in the MAPK signaling pathway. These findings suggested that OVA hydrolysates could be used as an anti-inflammatory agent that prevent the overproduction of NO.

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.

Quercetin Inhibits Inflammation Responses via MAPKs and NF-κB Signaling Pathways in LPS-stimulated RAW264.7 Cells (마우스 대식세포 RAW264.7 세포에서 MAPK와 NF-κB 경로를 통한 quercetin의 염증 반응 저해 활성)

  • Woo Young, Won;Jeong Tae, Kim;Keun Ho, Kim;Ji Young, Hwang;Chung-Wook, Chung;Jong Sik, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.899-907
    • /
    • 2022
  • Quercetin is one of bio-flavonoids which are abundant in fruits and vegetables and has been reported to have various pharmacological potentials such as anti-oxidation, anti-inflammation, anti-cancer, and anti-virus effects. In the present study, the anti-inflammatory effects and its working molecular mecha- nism of quercetin were investigated in mouse macrophage RAW264.7 cells. Quercetin significantly inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability and decreased inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 cells. In addition, quercetin decreased phosphorylation of p38, JNK, and ERK, and inhibited phosphorylation of NF-κB p65 protein and its inhibitor IκBα indicating that quercetin has the anti-inflammatory effects via regulation of MAPKs and NF-κB signaling pathway. We also detected expression changes of four kinds of pro-inflammatory cytokine genes (CSF2, IL-1β, IL-6, and TNF-α) with quantitative real-time PCR. The results showed that quercetin decreased the expression of four pro-inflammatory genes in LPS-stimulated RAW264.7 cells. Overall, our results showed that quercetin effectively suppressed inflammation responses induced by LPS in RAW264.7 cells via regulating MAPK and NF-κB pathway and down-regulating the expression of pro-inflammatory cytokine genes.

Anti-inflammatory effect of Arctium minus on LPS-stimulated RAW 264.7 cells

  • Yang, Hye-Ji;Jang, Min-Hye;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.115-115
    • /
    • 2019
  • Arctium minus (AM), commonly known as lesser burdock, is a dried fruit (seed) of Aructium lappa L. that belong to Asteraceae. It has been used traditionally as herbal medicine because of its anti-inflammatory effects, and it has been applied to treat various diseases like allergies, skin aging, hyperlipidemia and urinary stone. In this study, we investigated the inhibitory effects of AM on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pre-treatment of the RAW 264.7 cells with AM considerably inhibited and reduced production of Nitric Oxide (NO) and pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and also shows suppression of nuclear factor-kappa B (NF-${\kappa}B$) translocation. In addition, AM treatment considerably reduced phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. Our results indicate that the AM has potential to inhibit inflammation through suppressing production of inflammatory mediators via both the NF-${\kappa}B$ and MAPK signaling pathway. We therefore suggest that AM might be effective therapeutics for the treatment of various inflammatory diseases.

  • PDF